File size: 17,442 Bytes
2fd5bd1
 
 
 
866c000
2fd5bd1
d707e05
cf00c9b
9b7753f
1723a69
2fd5bd1
 
 
 
 
7be8c80
554fad9
7b4baf8
111bf4a
 
98b3127
f6921b0
 
2fd5bd1
111bf4a
2fd5bd1
c0e4160
2fd5bd1
 
c0e4160
2fd5bd1
c0e4160
98b3127
9aae468
2fd5bd1
8b40745
 
111bf4a
 
 
 
 
 
 
 
 
2fd5bd1
 
 
 
 
 
 
 
 
 
 
 
111bf4a
 
 
2fd5bd1
096a9e5
2298f8c
2fd5bd1
b5fa3d2
98b3127
f80d9ec
98b3127
 
cf00c9b
98b3127
cf00c9b
f80d9ec
cf00c9b
f80d9ec
417aebf
 
64a2a89
cf00c9b
a8a4cc0
1315b05
b5fa3d2
24bca70
a8a4cc0
 
cf00c9b
15cf306
725bdfd
 
 
cf00c9b
7bae417
2fd5bd1
 
c0e4160
2fd5bd1
 
111bf4a
c0e4160
2fd5bd1
0db2908
 
 
2fd5bd1
 
 
 
 
 
cf00c9b
 
 
725717f
2fd5bd1
79ebb83
c0e4160
 
 
 
 
0db2908
c0e4160
 
f97da0a
 
554fad9
 
d31f3b7
c0e4160
 
 
 
111bf4a
 
c0e4160
111bf4a
c0e4160
 
 
 
 
 
111bf4a
c0e4160
111bf4a
8e5b776
c0e4160
111bf4a
c0e4160
 
 
 
 
 
 
 
 
 
 
cf00c9b
 
 
c0e4160
 
 
 
 
 
 
 
0db2908
 
 
c7abc95
 
 
 
7291b44
ad1ae32
c0e4160
 
111bf4a
 
c0e4160
111bf4a
98b3127
33c2684
80de712
cfe6e5f
80de712
 
111bf4a
80de712
111bf4a
8e5b776
2fd5bd1
111bf4a
c0e4160
 
 
 
 
 
 
 
 
 
 
cf00c9b
 
 
c0e4160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111bf4a
 
c0e4160
111bf4a
c0e4160
 
 
 
 
 
111bf4a
c0e4160
111bf4a
8e5b776
2fd5bd1
111bf4a
c0e4160
9353b81
c0e4160
 
 
9353b81
 
 
 
c0e4160
9353b81
c0e4160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111bf4a
 
c0e4160
111bf4a
c0e4160
 
 
 
 
 
111bf4a
c0e4160
111bf4a
8e5b776
c0e4160
 
 
 
 
9353b81
e7a29cf
2fd5bd1
c0e4160
 
2fd5bd1
 
 
 
 
 
 
 
c0e4160
 
 
 
2fd5bd1
1baebc0
0db2908
 
2fd5bd1
 
a88ebfb
0db2908
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fd5bd1
9353b81
 
 
2fd5bd1
 
 
 
 
 
c0e4160
2fd5bd1
 
 
 
 
 
c0e4160
2fd5bd1
 
 
 
a2679e2
2fd5bd1
c0e4160
2fd5bd1
 
 
 
 
 
c0e4160
2fd5bd1
 
c0e4160
 
 
 
 
 
 
 
 
 
 
 
4547e26
c0e4160
 
 
 
 
 
 
 
 
 
 
 
 
 
4547e26
c0e4160
 
 
 
 
 
 
 
 
 
 
 
 
 
4547e26
c0e4160
 
 
 
2fd5bd1
 
0db2908
 
 
2fd5bd1
 
 
 
 
4547e26
2fd5bd1
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
import spaces
import gradio as gr
import numpy as np
import random

import torch
from diffusers import StableDiffusion3Pipeline, AutoencoderKL
from transformers import CLIPTextModelWithProjection, T5EncoderModel
from transformers import CLIPTokenizer, T5TokenizerFast

import re
import paramiko
import urllib
import time
import os
from image_gen_aux import UpscaleWithModel
from huggingface_hub import hf_hub_download
import datetime
import cyper

#from diffusers import SD3Transformer2DModel, AutoencoderKL
#from models.transformer_sd3 import SD3Transformer2DModel
#from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline

from PIL import Image

torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
#torch.backends.cuda.preferred_blas_library="cublas"
#torch.backends.cuda.preferred_linalg_library="cusolver"

hftoken = os.getenv("HF_AUTH_TOKEN") 

code = r'''
import torch
import paramiko
import os
FTP_HOST = os.getenv("FTP_HOST")
FTP_USER = os.getenv("FTP_USER")
FTP_PASS = os.getenv("FTP_PASS")
FTP_DIR = os.getenv("FTP_DIR")

def upload_to_ftp(filename):
    try:
        transport = paramiko.Transport((FTP_HOST, 22))
        destination_path=FTP_DIR+filename
        transport.connect(username = FTP_USER, password = FTP_PASS)
        sftp = paramiko.SFTPClient.from_transport(transport)
        sftp.put(filename, destination_path)
        sftp.close()
        transport.close()
        print(f"Uploaded {filename} to FTP server")
    except Exception as e:
        print(f"FTP upload error: {e}")
'''

pyx = cyper.inline(code, fast_indexing=True, directives=dict(boundscheck=False, wraparound=False, language_level=3))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
vaeX=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", safety_checker=None, use_safetensors=True, subfolder='vae', low_cpu_mem_usage=False, token=True)

pipe = StableDiffusion3Pipeline.from_pretrained(
    #"stabilityai  #  stable-diffusion-3.5-large",
    "ford442/stable-diffusion-3.5-large-bf16",
#    vae=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", use_safetensors=True, subfolder='vae',token=True),
     #scheduler = FlowMatchHeunDiscreteScheduler.from_pretrained('ford442/stable-diffusion-3.5-large-bf16', subfolder='scheduler',token=True),
     text_encoder=None, #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
    # text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
    text_encoder_2=None, #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
  #  text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
    text_encoder_3=None, #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
  #  text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
    #tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
    #tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
    tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=False, use_fast=True, subfolder="tokenizer_3", token=True),
    vae=None,
    #torch_dtype=torch.bfloat16,
    #use_safetensors=False,
)
#pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
pipe.to(device=device, dtype=torch.bfloat16)
#pipe.to(device)
pipe.vae=vaeX.to('cpu')

text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
    
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to('cpu') #.to(device)

MAX_SEED = np.iinfo(np.int32).max

MAX_IMAGE_SIZE = 4096

@spaces.GPU(duration=40)
def infer_30(
    prompt,
    negative_prompt_1,
    negative_prompt_2,
    negative_prompt_3,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    pipe.text_encoder=text_encoder
    pipe.text_encoder_2=text_encoder_2
    pipe.text_encoder_3=text_encoder_3
    torch.set_float32_matmul_precision("highest")
    seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device='cuda').manual_seed(seed)
    print('-- generating image --')
    sd_image = pipe(
            prompt=prompt,
            prompt_2=prompt,
            prompt_3=prompt,
            negative_prompt=negative_prompt_1,
            negative_prompt_2=negative_prompt_2,
            negative_prompt_3=negative_prompt_3,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
         #   cross_attention_kwargs={"scale": 0.75},
            generator=generator,
            max_sequence_length=512
    ).images[0]
    print('-- got image --')
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    sd35_path = f"sd35l_{timestamp}.png"
    sd_image.save(sd35_path,optimize=False,compress_level=0)
    pyx.upload_to_ftp(sd35_path)
    #  pipe.unet.to('cpu')
    upscaler_2.to(torch.device('cuda'))
    with torch.no_grad():
        upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
    print('-- got upscaled image --')
    downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
    upscale_path = f"sd35l_upscale_{timestamp}.png"
    downscale2.save(upscale_path,optimize=False,compress_level=0)
    pyx.upload_to_ftp(upscale_path)
    return sd_image, prompt

@spaces.GPU(duration=70)
def infer_60(
    prompt,
    negative_prompt_1,
    negative_prompt_2,
    negative_prompt_3,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    pipe.text_encoder=text_encoder
    pipe.text_encoder_2=text_encoder_2
    pipe.text_encoder_3=text_encoder_3
    torch.set_float32_matmul_precision("highest")
    seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device='cuda').manual_seed(seed)
    print('-- generating image --')
    sd_image = pipe(
            prompt=prompt,
            prompt_2=prompt,
            prompt_3=prompt,
            negative_prompt=negative_prompt_1,
            negative_prompt_2=negative_prompt_2,
            negative_prompt_3=negative_prompt_3,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
            max_sequence_length=512
    ).images[0]
    print('-- got image --')
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    sd35_path = f"sd35l_{timestamp}.png"
    sd_image.save(sd35_path,optimize=False,compress_level=0)
    pyx.upload_to_ftp(sd35_path)
    #  pipe.unet.to('cpu')
    upscaler_2.to(torch.device('cuda'))
    with torch.no_grad():
        upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
    print('-- got upscaled image --')
    downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
    upscale_path = f"sd35l_upscale_{timestamp}.png"
    downscale2.save(upscale_path,optimize=False,compress_level=0)
    pyx.upload_to_ftp(upscale_path)
    return sd_image, prompt

@spaces.GPU(duration=100)
def infer_90(
    prompt,
    negative_prompt_1,
    negative_prompt_2,
    negative_prompt_3,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    pipe.text_encoder=text_encoder
    pipe.text_encoder_2=text_encoder_2
    pipe.text_encoder_3=text_encoder_3
    torch.set_float32_matmul_precision("highest")
    seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device='cuda').manual_seed(seed)
    print('-- generating image --')
    sd_image = pipe(
            prompt=prompt,
            prompt_2=prompt,
            prompt_3=prompt,
            negative_prompt=negative_prompt_1,
            negative_prompt_2=negative_prompt_2,
            negative_prompt_3=negative_prompt_3,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
            max_sequence_length=512
    ).images[0]
    print('-- got image --')
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    sd35_path = f"sd35l_{timestamp}.png"
    sd_image.save(sd35_path,optimize=False,compress_level=0)
    pyx.upload_to_ftp(sd35_path)
    #  pipe.unet.to('cpu')
    upscaler_2.to(torch.device('cuda'))
    with torch.no_grad():
        upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
    print('-- got upscaled image --')
    downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
    upscale_path = f"sd35l_upscale_{timestamp}.png"
    downscale2.save(upscale_path,optimize=False,compress_level=0)
    pyx.upload_to_ftp(upscale_path)
    return sd_image, prompt

@spaces.GPU(duration=110)
def infer_100(
    prompt,
    negative_prompt_1,
    negative_prompt_2,
    negative_prompt_3,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    torch.set_float32_matmul_precision("highest")
    seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device='cuda').manual_seed(seed)
    print('-- generating image --')
    sd_image = pipe(
            prompt=prompt,
            prompt_2=prompt,
            prompt_3=prompt,
            negative_prompt=negative_prompt_1,
            negative_prompt_2=negative_prompt_2,
            negative_prompt_3=negative_prompt_3,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
            max_sequence_length=512
    ).images[0]
    print('-- got image --')
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    sd35_path = f"sd35l_{timestamp}.png"
    sd_image.save(sd35_path,optimize=False,compress_level=0)
    pyx.upload_to_ftp(sd35_path)
    #  pipe.unet.to('cpu')
    upscaler_2.to(torch.device('cuda'))
    with torch.no_grad():
        upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
    print('-- got upscaled image --')
    downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
    upscale_path = f"sd35l_upscale_{timestamp}.png"
    downscale2.save(upscale_path,optimize=False,compress_level=0)
    pyx.upload_to_ftp(upscale_path)
    return sd_image, prompt
    
css = """
#col-container {margin: 0 auto;max-width: 640px;}
body{background-color: blue;}
"""

with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image StableDiffusion 3.5 Large")
        expanded_prompt_output = gr.Textbox(label="Prompt", lines=1)  # Add this line
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button_30 = gr.Button("Run 30", scale=0, variant="primary")
            run_button_60 = gr.Button("Run 60", scale=0, variant="primary")
            run_button_90 = gr.Button("Run 90", scale=0, variant="primary")
            run_button_100 = gr.Button("Run 100", scale=0, variant="primary")
        result = gr.Image(label="Result", show_label=False)
        with gr.Accordion("Advanced Settings", open=True):
            negative_prompt_1 = gr.Text(
                label="Negative prompt 1",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
                value="bad anatomy, poorly drawn hands, distorted face, blurry, out of frame, low resolution, grainy, pixelated, disfigured, mutated, extra limbs, bad composition"
            )
            negative_prompt_2 = gr.Text(
                label="Negative prompt 2",
                max_lines=1,
                placeholder="Enter a second negative prompt",
                visible=True,
                value="unrealistic, cartoon, anime, sketch, painting, drawing, illustration, graphic, digital art, render, 3d, blurry, deformed, disfigured, poorly drawn, bad anatomy, mutated, extra limbs, ugly, out of frame, bad composition, low resolution, grainy, pixelated, noisy, oversaturated, undersaturated, (worst quality, low quality:1.3), (bad hands, missing fingers:1.2)"
            )
            negative_prompt_3 = gr.Text(
                label="Negative prompt 3",
                max_lines=1,
                placeholder="Enter a third negative prompt",
                visible=True,
                value="(worst quality, low quality:1.3), (bad anatomy, bad hands, missing fingers, extra digit, fewer digits:1.2), (blurry:1.1), cropped, watermark, text, signature, logo, jpeg artifacts, (ugly, deformed, disfigured:1.2), (poorly drawn:1.2), mutated, extra limbs, (bad proportions, gross proportions:1.2), (malformed limbs, missing arms, missing legs, extra arms, extra legs:1.2), (fused fingers, too many fingers, long neck:1.2), (unnatural body, unnatural pose:1.1), out of frame, (bad composition, poorly composed:1.1), (oversaturated, undersaturated:1.1), (grainy, pixelated:1.1), (low resolution, noisy:1.1), (unrealistic, distorted:1.1), (extra fingers, mutated hands, poorly drawn hands, bad hands:1.3), (missing fingers:1.3)"
            )
            num_iterations = gr.Number(
                value=1000, 
                label="Number of Iterations")
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=768,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=768,
                )
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=30.0,
                    step=0.1,
                    value=4.2,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=500,
                    step=1,
                    value=50,
                )
        gr.on(
        triggers=[run_button_30.click, prompt.submit],
        fn=infer_30,
        inputs=[
            prompt,
            negative_prompt_1,
            negative_prompt_2,
            negative_prompt_3,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, expanded_prompt_output],
        )
        gr.on(
        triggers=[run_button_60.click, prompt.submit],
        fn=infer_60,
        inputs=[
            prompt,
            negative_prompt_1,
            negative_prompt_2,
            negative_prompt_3,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, expanded_prompt_output],
        )
        gr.on(
        triggers=[run_button_90.click, prompt.submit],
        fn=infer_90,
        inputs=[
            prompt,
            negative_prompt_1,
            negative_prompt_2,
            negative_prompt_3,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, expanded_prompt_output],
        )
        gr.on(
        triggers=[run_button_100.click, prompt.submit],
        fn=infer_100,
        inputs=[
            prompt,
            negative_prompt_1,
            negative_prompt_2,
            negative_prompt_3,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, expanded_prompt_output],
        )

if __name__ == "__main__":
    demo.launch()