ford442 commited on
Commit
554fad9
·
verified ·
1 Parent(s): 29c63b7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -27
app.py CHANGED
@@ -16,7 +16,10 @@ import time
16
  import os
17
  from ip_adapter import IPAdapterXL
18
  from image_gen_aux import UpscaleWithModel
19
- from huggingface_hub import snapshot_download
 
 
 
20
 
21
  FTP_HOST = "1ink.us"
22
  FTP_USER = "ford442"
@@ -35,6 +38,9 @@ torch.set_float32_matmul_precision("highest")
35
 
36
  hftoken = os.getenv("HF_AUTH_TOKEN")
37
 
 
 
 
38
  def upload_to_ftp(filename):
39
  try:
40
  transport = paramiko.Transport((FTP_HOST, 22))
@@ -57,7 +63,13 @@ checkpoint = "microsoft/Phi-3.5-mini-instruct"
57
  vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
58
  #vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
59
 
60
- pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(device=torch.device("cuda:0"), dtype=torch.bfloat16)
 
 
 
 
 
 
61
  #pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(torch.device("cuda:0"))
62
  #pipe = StableDiffusion3Pipeline.from_pretrained("ford442/RealVis_Medium_1.0b_bf16", torch_dtype=torch.bfloat16)
63
  #pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium", token=hftoken, torch_dtype=torch.float32, device_map='balanced')
@@ -89,26 +101,14 @@ model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map='balanced')
89
 
90
 
91
 
92
- repo_id = "ford442/SDXL-IP_ADAPTER"
93
- subfolder = "image_encoder"
94
- subfolder2 = "ip_adapter"
95
-
96
- # Download the entire repository
97
- local_repo_path = snapshot_download(repo_id=repo_id, repo_type="model")
98
 
99
- # Construct the paths to the subfolders
100
- local_folder = os.path.join(local_repo_path, subfolder)
101
- local_folder2 = os.path.join(local_repo_path, subfolder2) # Path to the ip_adapter dir
102
 
103
- print(f"Image encoder downloaded to: {local_folder}")
104
- print(f"IP Adapter files downloaded to: {local_folder2}")
105
 
106
- # Construct the path to the ip-adapter_sdxl.bin file
107
- #ip_ckpt = os.path.join(local_folder2, "ip-adapter_sdxl.bin") # Correct path
108
- ip_ckpt = os.path.join(local_folder2, "ip-adapter_sdxl_vit-h.bin") # Correct path
109
-
110
- print(f"IP Adapter checkpoint path: {ip_ckpt}")
111
- ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
112
 
113
  upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
114
 
@@ -221,14 +221,14 @@ def infer(
221
  print("-- using image file --")
222
  print('-- generating image --')
223
  #with torch.no_grad():
224
- sd_image = ip_model.generate(
225
- prompt=enhanced_prompt,
226
- pil_image=sd_image_a,
227
- num_samples=1,
228
- num_inference_steps=num_inference_steps,
229
- guidance_scale=guidance_scale,
230
- seed=seed
231
- )
232
  rv_path = f"sd35_{seed}.png"
233
  sd_image[0].save(rv_path,optimize=False,compress_level=0)
234
  upload_to_ftp(rv_path)
 
16
  import os
17
  from ip_adapter import IPAdapterXL
18
  from image_gen_aux import UpscaleWithModel
19
+ from huggingface_hub import hf_hub_download
20
+ from models.transformer_sd3 import SD3Transformer2DModel
21
+ from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
22
+ from PIL import Image
23
 
24
  FTP_HOST = "1ink.us"
25
  FTP_USER = "ford442"
 
38
 
39
  hftoken = os.getenv("HF_AUTH_TOKEN")
40
 
41
+ image_encoder_path = "google/siglip-so400m-patch14-384"
42
+ ipadapter_path = hf_hub_download(repo_id="InstantX/SD3.5-Large-IP-Adapter", filename="ip-adapter.bin")
43
+
44
  def upload_to_ftp(filename):
45
  try:
46
  transport = paramiko.Transport((FTP_HOST, 22))
 
63
  vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
64
  #vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
65
 
66
+ transformer = SD3Transformer2DModel.from_pretrained(
67
+ model_path,
68
+ subfolder="transformer",
69
+ torch_dtype=torch.bfloat16
70
+ )
71
+
72
+ pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16", transformer=transformer).to(device=torch.device("cuda:0"), dtype=torch.bfloat16)
73
  #pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(torch.device("cuda:0"))
74
  #pipe = StableDiffusion3Pipeline.from_pretrained("ford442/RealVis_Medium_1.0b_bf16", torch_dtype=torch.bfloat16)
75
  #pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium", token=hftoken, torch_dtype=torch.float32, device_map='balanced')
 
101
 
102
 
103
 
104
+ pipe.init_ipadapter(
105
+ ip_adapter_path=ipadapter_path,
106
+ image_encoder_path=image_encoder_path,
107
+ nb_token=64,
108
+ )
 
109
 
 
 
 
110
 
 
 
111
 
 
 
 
 
 
 
112
 
113
  upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
114
 
 
221
  print("-- using image file --")
222
  print('-- generating image --')
223
  #with torch.no_grad():
224
+ result = pipe(
225
+ clip_image=image,
226
+ prompt=prompt,
227
+ ipadapter_scale=scale,
228
+ width=width,
229
+ height=height,
230
+ generator=torch.Generator().manual_seed(seed)
231
+ ).images[0]
232
  rv_path = f"sd35_{seed}.png"
233
  sd_image[0].save(rv_path,optimize=False,compress_level=0)
234
  upload_to_ftp(rv_path)