Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -16,7 +16,10 @@ import time
|
|
| 16 |
import os
|
| 17 |
from ip_adapter import IPAdapterXL
|
| 18 |
from image_gen_aux import UpscaleWithModel
|
| 19 |
-
from huggingface_hub import
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
FTP_HOST = "1ink.us"
|
| 22 |
FTP_USER = "ford442"
|
|
@@ -35,6 +38,9 @@ torch.set_float32_matmul_precision("highest")
|
|
| 35 |
|
| 36 |
hftoken = os.getenv("HF_AUTH_TOKEN")
|
| 37 |
|
|
|
|
|
|
|
|
|
|
| 38 |
def upload_to_ftp(filename):
|
| 39 |
try:
|
| 40 |
transport = paramiko.Transport((FTP_HOST, 22))
|
|
@@ -57,7 +63,13 @@ checkpoint = "microsoft/Phi-3.5-mini-instruct"
|
|
| 57 |
vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
| 58 |
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
| 59 |
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(torch.device("cuda:0"))
|
| 62 |
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/RealVis_Medium_1.0b_bf16", torch_dtype=torch.bfloat16)
|
| 63 |
#pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium", token=hftoken, torch_dtype=torch.float32, device_map='balanced')
|
|
@@ -89,26 +101,14 @@ model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map='balanced')
|
|
| 89 |
|
| 90 |
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
local_repo_path = snapshot_download(repo_id=repo_id, repo_type="model")
|
| 98 |
|
| 99 |
-
# Construct the paths to the subfolders
|
| 100 |
-
local_folder = os.path.join(local_repo_path, subfolder)
|
| 101 |
-
local_folder2 = os.path.join(local_repo_path, subfolder2) # Path to the ip_adapter dir
|
| 102 |
|
| 103 |
-
print(f"Image encoder downloaded to: {local_folder}")
|
| 104 |
-
print(f"IP Adapter files downloaded to: {local_folder2}")
|
| 105 |
|
| 106 |
-
# Construct the path to the ip-adapter_sdxl.bin file
|
| 107 |
-
#ip_ckpt = os.path.join(local_folder2, "ip-adapter_sdxl.bin") # Correct path
|
| 108 |
-
ip_ckpt = os.path.join(local_folder2, "ip-adapter_sdxl_vit-h.bin") # Correct path
|
| 109 |
-
|
| 110 |
-
print(f"IP Adapter checkpoint path: {ip_ckpt}")
|
| 111 |
-
ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
|
| 112 |
|
| 113 |
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
|
| 114 |
|
|
@@ -221,14 +221,14 @@ def infer(
|
|
| 221 |
print("-- using image file --")
|
| 222 |
print('-- generating image --')
|
| 223 |
#with torch.no_grad():
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
)
|
| 232 |
rv_path = f"sd35_{seed}.png"
|
| 233 |
sd_image[0].save(rv_path,optimize=False,compress_level=0)
|
| 234 |
upload_to_ftp(rv_path)
|
|
|
|
| 16 |
import os
|
| 17 |
from ip_adapter import IPAdapterXL
|
| 18 |
from image_gen_aux import UpscaleWithModel
|
| 19 |
+
from huggingface_hub import hf_hub_download
|
| 20 |
+
from models.transformer_sd3 import SD3Transformer2DModel
|
| 21 |
+
from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
|
| 22 |
+
from PIL import Image
|
| 23 |
|
| 24 |
FTP_HOST = "1ink.us"
|
| 25 |
FTP_USER = "ford442"
|
|
|
|
| 38 |
|
| 39 |
hftoken = os.getenv("HF_AUTH_TOKEN")
|
| 40 |
|
| 41 |
+
image_encoder_path = "google/siglip-so400m-patch14-384"
|
| 42 |
+
ipadapter_path = hf_hub_download(repo_id="InstantX/SD3.5-Large-IP-Adapter", filename="ip-adapter.bin")
|
| 43 |
+
|
| 44 |
def upload_to_ftp(filename):
|
| 45 |
try:
|
| 46 |
transport = paramiko.Transport((FTP_HOST, 22))
|
|
|
|
| 63 |
vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
| 64 |
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
| 65 |
|
| 66 |
+
transformer = SD3Transformer2DModel.from_pretrained(
|
| 67 |
+
model_path,
|
| 68 |
+
subfolder="transformer",
|
| 69 |
+
torch_dtype=torch.bfloat16
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16", transformer=transformer).to(device=torch.device("cuda:0"), dtype=torch.bfloat16)
|
| 73 |
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(torch.device("cuda:0"))
|
| 74 |
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/RealVis_Medium_1.0b_bf16", torch_dtype=torch.bfloat16)
|
| 75 |
#pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium", token=hftoken, torch_dtype=torch.float32, device_map='balanced')
|
|
|
|
| 101 |
|
| 102 |
|
| 103 |
|
| 104 |
+
pipe.init_ipadapter(
|
| 105 |
+
ip_adapter_path=ipadapter_path,
|
| 106 |
+
image_encoder_path=image_encoder_path,
|
| 107 |
+
nb_token=64,
|
| 108 |
+
)
|
|
|
|
| 109 |
|
|
|
|
|
|
|
|
|
|
| 110 |
|
|
|
|
|
|
|
| 111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
|
| 114 |
|
|
|
|
| 221 |
print("-- using image file --")
|
| 222 |
print('-- generating image --')
|
| 223 |
#with torch.no_grad():
|
| 224 |
+
result = pipe(
|
| 225 |
+
clip_image=image,
|
| 226 |
+
prompt=prompt,
|
| 227 |
+
ipadapter_scale=scale,
|
| 228 |
+
width=width,
|
| 229 |
+
height=height,
|
| 230 |
+
generator=torch.Generator().manual_seed(seed)
|
| 231 |
+
).images[0]
|
| 232 |
rv_path = f"sd35_{seed}.png"
|
| 233 |
sd_image[0].save(rv_path,optimize=False,compress_level=0)
|
| 234 |
upload_to_ftp(rv_path)
|