Spaces:
Build error
Build error
Delete ip_adapter
Browse files- ip_adapter/__init__.py +0 -1
- ip_adapter/__pycache__/__init__.cpython-310.pyc +0 -0
- ip_adapter/__pycache__/attention_processor.cpython-310.pyc +0 -0
- ip_adapter/__pycache__/ip_adapter.cpython-310.pyc +0 -0
- ip_adapter/__pycache__/resampler.cpython-310.pyc +0 -0
- ip_adapter/__pycache__/utils.cpython-310.pyc +0 -0
- ip_adapter/attention_processor.py +0 -553
- ip_adapter/ip_adapter.py +0 -273
- ip_adapter/resampler.py +0 -121
- ip_adapter/utils.py +0 -5
ip_adapter/__init__.py
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
from .ip_adapter import IPAdapter, IPAdapterXL, IPAdapterPlus
|
|
|
|
|
|
ip_adapter/__pycache__/__init__.cpython-310.pyc
DELETED
|
Binary file (234 Bytes)
|
|
|
ip_adapter/__pycache__/attention_processor.cpython-310.pyc
DELETED
|
Binary file (9.71 kB)
|
|
|
ip_adapter/__pycache__/ip_adapter.cpython-310.pyc
DELETED
|
Binary file (8.17 kB)
|
|
|
ip_adapter/__pycache__/resampler.cpython-310.pyc
DELETED
|
Binary file (3.17 kB)
|
|
|
ip_adapter/__pycache__/utils.cpython-310.pyc
DELETED
|
Binary file (362 Bytes)
|
|
|
ip_adapter/attention_processor.py
DELETED
|
@@ -1,553 +0,0 @@
|
|
| 1 |
-
# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
|
| 2 |
-
import torch
|
| 3 |
-
import torch.nn as nn
|
| 4 |
-
import torch.nn.functional as F
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
class AttnProcessor(nn.Module):
|
| 8 |
-
r"""
|
| 9 |
-
Default processor for performing attention-related computations.
|
| 10 |
-
"""
|
| 11 |
-
def __init__(
|
| 12 |
-
self,
|
| 13 |
-
hidden_size=None,
|
| 14 |
-
cross_attention_dim=None,
|
| 15 |
-
):
|
| 16 |
-
super().__init__()
|
| 17 |
-
|
| 18 |
-
def __call__(
|
| 19 |
-
self,
|
| 20 |
-
attn,
|
| 21 |
-
hidden_states,
|
| 22 |
-
encoder_hidden_states=None,
|
| 23 |
-
attention_mask=None,
|
| 24 |
-
temb=None,
|
| 25 |
-
):
|
| 26 |
-
residual = hidden_states
|
| 27 |
-
|
| 28 |
-
if attn.spatial_norm is not None:
|
| 29 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 30 |
-
|
| 31 |
-
input_ndim = hidden_states.ndim
|
| 32 |
-
|
| 33 |
-
if input_ndim == 4:
|
| 34 |
-
batch_size, channel, height, width = hidden_states.shape
|
| 35 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 36 |
-
|
| 37 |
-
batch_size, sequence_length, _ = (
|
| 38 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 39 |
-
)
|
| 40 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 41 |
-
|
| 42 |
-
if attn.group_norm is not None:
|
| 43 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 44 |
-
|
| 45 |
-
query = attn.to_q(hidden_states)
|
| 46 |
-
|
| 47 |
-
if encoder_hidden_states is None:
|
| 48 |
-
encoder_hidden_states = hidden_states
|
| 49 |
-
elif attn.norm_cross:
|
| 50 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 51 |
-
|
| 52 |
-
key = attn.to_k(encoder_hidden_states)
|
| 53 |
-
value = attn.to_v(encoder_hidden_states)
|
| 54 |
-
|
| 55 |
-
query = attn.head_to_batch_dim(query)
|
| 56 |
-
key = attn.head_to_batch_dim(key)
|
| 57 |
-
value = attn.head_to_batch_dim(value)
|
| 58 |
-
|
| 59 |
-
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
| 60 |
-
hidden_states = torch.bmm(attention_probs, value)
|
| 61 |
-
hidden_states = attn.batch_to_head_dim(hidden_states)
|
| 62 |
-
|
| 63 |
-
# linear proj
|
| 64 |
-
hidden_states = attn.to_out[0](hidden_states)
|
| 65 |
-
# dropout
|
| 66 |
-
hidden_states = attn.to_out[1](hidden_states)
|
| 67 |
-
|
| 68 |
-
if input_ndim == 4:
|
| 69 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 70 |
-
|
| 71 |
-
if attn.residual_connection:
|
| 72 |
-
hidden_states = hidden_states + residual
|
| 73 |
-
|
| 74 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
| 75 |
-
|
| 76 |
-
return hidden_states
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
class IPAttnProcessor(nn.Module):
|
| 80 |
-
r"""
|
| 81 |
-
Attention processor for IP-Adapater.
|
| 82 |
-
Args:
|
| 83 |
-
hidden_size (`int`):
|
| 84 |
-
The hidden size of the attention layer.
|
| 85 |
-
cross_attention_dim (`int`):
|
| 86 |
-
The number of channels in the `encoder_hidden_states`.
|
| 87 |
-
scale (`float`, defaults to 1.0):
|
| 88 |
-
the weight scale of image prompt.
|
| 89 |
-
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
| 90 |
-
The context length of the image features.
|
| 91 |
-
"""
|
| 92 |
-
|
| 93 |
-
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
|
| 94 |
-
super().__init__()
|
| 95 |
-
|
| 96 |
-
self.hidden_size = hidden_size
|
| 97 |
-
self.cross_attention_dim = cross_attention_dim
|
| 98 |
-
self.scale = scale
|
| 99 |
-
self.num_tokens = num_tokens
|
| 100 |
-
|
| 101 |
-
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
| 102 |
-
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
| 103 |
-
|
| 104 |
-
def __call__(
|
| 105 |
-
self,
|
| 106 |
-
attn,
|
| 107 |
-
hidden_states,
|
| 108 |
-
encoder_hidden_states=None,
|
| 109 |
-
attention_mask=None,
|
| 110 |
-
temb=None,
|
| 111 |
-
):
|
| 112 |
-
residual = hidden_states
|
| 113 |
-
|
| 114 |
-
if attn.spatial_norm is not None:
|
| 115 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 116 |
-
|
| 117 |
-
input_ndim = hidden_states.ndim
|
| 118 |
-
|
| 119 |
-
if input_ndim == 4:
|
| 120 |
-
batch_size, channel, height, width = hidden_states.shape
|
| 121 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 122 |
-
|
| 123 |
-
batch_size, sequence_length, _ = (
|
| 124 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 125 |
-
)
|
| 126 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 127 |
-
|
| 128 |
-
if attn.group_norm is not None:
|
| 129 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 130 |
-
|
| 131 |
-
query = attn.to_q(hidden_states)
|
| 132 |
-
|
| 133 |
-
if encoder_hidden_states is None:
|
| 134 |
-
encoder_hidden_states = hidden_states
|
| 135 |
-
else:
|
| 136 |
-
# get encoder_hidden_states, ip_hidden_states
|
| 137 |
-
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
| 138 |
-
encoder_hidden_states, ip_hidden_states = encoder_hidden_states[:, :end_pos, :], encoder_hidden_states[:, end_pos:, :]
|
| 139 |
-
if attn.norm_cross:
|
| 140 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 141 |
-
|
| 142 |
-
key = attn.to_k(encoder_hidden_states)
|
| 143 |
-
value = attn.to_v(encoder_hidden_states)
|
| 144 |
-
|
| 145 |
-
query = attn.head_to_batch_dim(query)
|
| 146 |
-
key = attn.head_to_batch_dim(key)
|
| 147 |
-
value = attn.head_to_batch_dim(value)
|
| 148 |
-
|
| 149 |
-
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
| 150 |
-
hidden_states = torch.bmm(attention_probs, value)
|
| 151 |
-
hidden_states = attn.batch_to_head_dim(hidden_states)
|
| 152 |
-
|
| 153 |
-
# for ip-adapter
|
| 154 |
-
ip_key = self.to_k_ip(ip_hidden_states)
|
| 155 |
-
ip_value = self.to_v_ip(ip_hidden_states)
|
| 156 |
-
|
| 157 |
-
ip_key = attn.head_to_batch_dim(ip_key)
|
| 158 |
-
ip_value = attn.head_to_batch_dim(ip_value)
|
| 159 |
-
|
| 160 |
-
ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
|
| 161 |
-
ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
|
| 162 |
-
ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
|
| 163 |
-
|
| 164 |
-
hidden_states = hidden_states + self.scale * ip_hidden_states
|
| 165 |
-
|
| 166 |
-
# linear proj
|
| 167 |
-
hidden_states = attn.to_out[0](hidden_states)
|
| 168 |
-
# dropout
|
| 169 |
-
hidden_states = attn.to_out[1](hidden_states)
|
| 170 |
-
|
| 171 |
-
if input_ndim == 4:
|
| 172 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 173 |
-
|
| 174 |
-
if attn.residual_connection:
|
| 175 |
-
hidden_states = hidden_states + residual
|
| 176 |
-
|
| 177 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
| 178 |
-
|
| 179 |
-
return hidden_states
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
class AttnProcessor2_0(torch.nn.Module):
|
| 183 |
-
r"""
|
| 184 |
-
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
| 185 |
-
"""
|
| 186 |
-
def __init__(
|
| 187 |
-
self,
|
| 188 |
-
hidden_size=None,
|
| 189 |
-
cross_attention_dim=None,
|
| 190 |
-
):
|
| 191 |
-
super().__init__()
|
| 192 |
-
if not hasattr(F, "scaled_dot_product_attention"):
|
| 193 |
-
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
| 194 |
-
|
| 195 |
-
def __call__(
|
| 196 |
-
self,
|
| 197 |
-
attn,
|
| 198 |
-
hidden_states,
|
| 199 |
-
encoder_hidden_states=None,
|
| 200 |
-
attention_mask=None,
|
| 201 |
-
temb=None,
|
| 202 |
-
):
|
| 203 |
-
residual = hidden_states
|
| 204 |
-
|
| 205 |
-
if attn.spatial_norm is not None:
|
| 206 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 207 |
-
|
| 208 |
-
input_ndim = hidden_states.ndim
|
| 209 |
-
|
| 210 |
-
if input_ndim == 4:
|
| 211 |
-
batch_size, channel, height, width = hidden_states.shape
|
| 212 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 213 |
-
|
| 214 |
-
batch_size, sequence_length, _ = (
|
| 215 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 216 |
-
)
|
| 217 |
-
|
| 218 |
-
if attention_mask is not None:
|
| 219 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 220 |
-
# scaled_dot_product_attention expects attention_mask shape to be
|
| 221 |
-
# (batch, heads, source_length, target_length)
|
| 222 |
-
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
| 223 |
-
|
| 224 |
-
if attn.group_norm is not None:
|
| 225 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 226 |
-
|
| 227 |
-
query = attn.to_q(hidden_states)
|
| 228 |
-
|
| 229 |
-
if encoder_hidden_states is None:
|
| 230 |
-
encoder_hidden_states = hidden_states
|
| 231 |
-
elif attn.norm_cross:
|
| 232 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 233 |
-
|
| 234 |
-
key = attn.to_k(encoder_hidden_states)
|
| 235 |
-
value = attn.to_v(encoder_hidden_states)
|
| 236 |
-
|
| 237 |
-
inner_dim = key.shape[-1]
|
| 238 |
-
head_dim = inner_dim // attn.heads
|
| 239 |
-
|
| 240 |
-
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 241 |
-
|
| 242 |
-
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 243 |
-
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 244 |
-
|
| 245 |
-
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 246 |
-
# TODO: add support for attn.scale when we move to Torch 2.1
|
| 247 |
-
hidden_states = F.scaled_dot_product_attention(
|
| 248 |
-
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
| 249 |
-
)
|
| 250 |
-
|
| 251 |
-
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 252 |
-
hidden_states = hidden_states.to(query.dtype)
|
| 253 |
-
|
| 254 |
-
# linear proj
|
| 255 |
-
hidden_states = attn.to_out[0](hidden_states)
|
| 256 |
-
# dropout
|
| 257 |
-
hidden_states = attn.to_out[1](hidden_states)
|
| 258 |
-
|
| 259 |
-
if input_ndim == 4:
|
| 260 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 261 |
-
|
| 262 |
-
if attn.residual_connection:
|
| 263 |
-
hidden_states = hidden_states + residual
|
| 264 |
-
|
| 265 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
| 266 |
-
|
| 267 |
-
return hidden_states
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
class IPAttnProcessor2_0(torch.nn.Module):
|
| 271 |
-
r"""
|
| 272 |
-
Attention processor for IP-Adapater for PyTorch 2.0.
|
| 273 |
-
Args:
|
| 274 |
-
hidden_size (`int`):
|
| 275 |
-
The hidden size of the attention layer.
|
| 276 |
-
cross_attention_dim (`int`):
|
| 277 |
-
The number of channels in the `encoder_hidden_states`.
|
| 278 |
-
scale (`float`, defaults to 1.0):
|
| 279 |
-
the weight scale of image prompt.
|
| 280 |
-
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
| 281 |
-
The context length of the image features.
|
| 282 |
-
"""
|
| 283 |
-
|
| 284 |
-
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
|
| 285 |
-
super().__init__()
|
| 286 |
-
|
| 287 |
-
if not hasattr(F, "scaled_dot_product_attention"):
|
| 288 |
-
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
| 289 |
-
|
| 290 |
-
self.hidden_size = hidden_size
|
| 291 |
-
self.cross_attention_dim = cross_attention_dim
|
| 292 |
-
self.scale = scale
|
| 293 |
-
self.num_tokens = num_tokens
|
| 294 |
-
|
| 295 |
-
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
| 296 |
-
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
| 297 |
-
|
| 298 |
-
def __call__(
|
| 299 |
-
self,
|
| 300 |
-
attn,
|
| 301 |
-
hidden_states,
|
| 302 |
-
encoder_hidden_states=None,
|
| 303 |
-
attention_mask=None,
|
| 304 |
-
temb=None,
|
| 305 |
-
):
|
| 306 |
-
residual = hidden_states
|
| 307 |
-
|
| 308 |
-
if attn.spatial_norm is not None:
|
| 309 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 310 |
-
|
| 311 |
-
input_ndim = hidden_states.ndim
|
| 312 |
-
|
| 313 |
-
if input_ndim == 4:
|
| 314 |
-
batch_size, channel, height, width = hidden_states.shape
|
| 315 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 316 |
-
|
| 317 |
-
batch_size, sequence_length, _ = (
|
| 318 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 319 |
-
)
|
| 320 |
-
|
| 321 |
-
if attention_mask is not None:
|
| 322 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 323 |
-
# scaled_dot_product_attention expects attention_mask shape to be
|
| 324 |
-
# (batch, heads, source_length, target_length)
|
| 325 |
-
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
| 326 |
-
|
| 327 |
-
if attn.group_norm is not None:
|
| 328 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 329 |
-
|
| 330 |
-
query = attn.to_q(hidden_states)
|
| 331 |
-
|
| 332 |
-
if encoder_hidden_states is None:
|
| 333 |
-
encoder_hidden_states = hidden_states
|
| 334 |
-
else:
|
| 335 |
-
# get encoder_hidden_states, ip_hidden_states
|
| 336 |
-
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
| 337 |
-
encoder_hidden_states, ip_hidden_states = encoder_hidden_states[:, :end_pos, :], encoder_hidden_states[:, end_pos:, :]
|
| 338 |
-
if attn.norm_cross:
|
| 339 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 340 |
-
|
| 341 |
-
key = attn.to_k(encoder_hidden_states)
|
| 342 |
-
value = attn.to_v(encoder_hidden_states)
|
| 343 |
-
|
| 344 |
-
inner_dim = key.shape[-1]
|
| 345 |
-
head_dim = inner_dim // attn.heads
|
| 346 |
-
|
| 347 |
-
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 348 |
-
|
| 349 |
-
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 350 |
-
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 351 |
-
|
| 352 |
-
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 353 |
-
# TODO: add support for attn.scale when we move to Torch 2.1
|
| 354 |
-
hidden_states = F.scaled_dot_product_attention(
|
| 355 |
-
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
| 356 |
-
)
|
| 357 |
-
|
| 358 |
-
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 359 |
-
hidden_states = hidden_states.to(query.dtype)
|
| 360 |
-
|
| 361 |
-
# for ip-adapter
|
| 362 |
-
ip_key = self.to_k_ip(ip_hidden_states)
|
| 363 |
-
ip_value = self.to_v_ip(ip_hidden_states)
|
| 364 |
-
|
| 365 |
-
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 366 |
-
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 367 |
-
|
| 368 |
-
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 369 |
-
# TODO: add support for attn.scale when we move to Torch 2.1
|
| 370 |
-
ip_hidden_states = F.scaled_dot_product_attention(
|
| 371 |
-
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
| 372 |
-
)
|
| 373 |
-
|
| 374 |
-
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 375 |
-
ip_hidden_states = ip_hidden_states.to(query.dtype)
|
| 376 |
-
|
| 377 |
-
hidden_states = hidden_states + self.scale * ip_hidden_states
|
| 378 |
-
|
| 379 |
-
# linear proj
|
| 380 |
-
hidden_states = attn.to_out[0](hidden_states)
|
| 381 |
-
# dropout
|
| 382 |
-
hidden_states = attn.to_out[1](hidden_states)
|
| 383 |
-
|
| 384 |
-
if input_ndim == 4:
|
| 385 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 386 |
-
|
| 387 |
-
if attn.residual_connection:
|
| 388 |
-
hidden_states = hidden_states + residual
|
| 389 |
-
|
| 390 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
| 391 |
-
|
| 392 |
-
return hidden_states
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
## for controlnet
|
| 396 |
-
class CNAttnProcessor:
|
| 397 |
-
r"""
|
| 398 |
-
Default processor for performing attention-related computations.
|
| 399 |
-
"""
|
| 400 |
-
|
| 401 |
-
def __init__(self, num_tokens=4):
|
| 402 |
-
self.num_tokens = num_tokens
|
| 403 |
-
|
| 404 |
-
def __call__(
|
| 405 |
-
self,
|
| 406 |
-
attn,
|
| 407 |
-
hidden_states,
|
| 408 |
-
encoder_hidden_states=None,
|
| 409 |
-
attention_mask=None,
|
| 410 |
-
temb=None
|
| 411 |
-
):
|
| 412 |
-
residual = hidden_states
|
| 413 |
-
|
| 414 |
-
if attn.spatial_norm is not None:
|
| 415 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 416 |
-
|
| 417 |
-
input_ndim = hidden_states.ndim
|
| 418 |
-
|
| 419 |
-
if input_ndim == 4:
|
| 420 |
-
batch_size, channel, height, width = hidden_states.shape
|
| 421 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 422 |
-
|
| 423 |
-
batch_size, sequence_length, _ = (
|
| 424 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 425 |
-
)
|
| 426 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 427 |
-
|
| 428 |
-
if attn.group_norm is not None:
|
| 429 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 430 |
-
|
| 431 |
-
query = attn.to_q(hidden_states)
|
| 432 |
-
|
| 433 |
-
if encoder_hidden_states is None:
|
| 434 |
-
encoder_hidden_states = hidden_states
|
| 435 |
-
else:
|
| 436 |
-
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
| 437 |
-
encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
|
| 438 |
-
if attn.norm_cross:
|
| 439 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 440 |
-
|
| 441 |
-
key = attn.to_k(encoder_hidden_states)
|
| 442 |
-
value = attn.to_v(encoder_hidden_states)
|
| 443 |
-
|
| 444 |
-
query = attn.head_to_batch_dim(query)
|
| 445 |
-
key = attn.head_to_batch_dim(key)
|
| 446 |
-
value = attn.head_to_batch_dim(value)
|
| 447 |
-
|
| 448 |
-
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
| 449 |
-
hidden_states = torch.bmm(attention_probs, value)
|
| 450 |
-
hidden_states = attn.batch_to_head_dim(hidden_states)
|
| 451 |
-
|
| 452 |
-
# linear proj
|
| 453 |
-
hidden_states = attn.to_out[0](hidden_states)
|
| 454 |
-
# dropout
|
| 455 |
-
hidden_states = attn.to_out[1](hidden_states)
|
| 456 |
-
|
| 457 |
-
if input_ndim == 4:
|
| 458 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 459 |
-
|
| 460 |
-
if attn.residual_connection:
|
| 461 |
-
hidden_states = hidden_states + residual
|
| 462 |
-
|
| 463 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
| 464 |
-
|
| 465 |
-
return hidden_states
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
class CNAttnProcessor2_0:
|
| 469 |
-
r"""
|
| 470 |
-
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
| 471 |
-
"""
|
| 472 |
-
|
| 473 |
-
def __init__(self, num_tokens=4):
|
| 474 |
-
if not hasattr(F, "scaled_dot_product_attention"):
|
| 475 |
-
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
| 476 |
-
self.num_tokens = num_tokens
|
| 477 |
-
|
| 478 |
-
def __call__(
|
| 479 |
-
self,
|
| 480 |
-
attn,
|
| 481 |
-
hidden_states,
|
| 482 |
-
encoder_hidden_states=None,
|
| 483 |
-
attention_mask=None,
|
| 484 |
-
temb=None,
|
| 485 |
-
):
|
| 486 |
-
residual = hidden_states
|
| 487 |
-
|
| 488 |
-
if attn.spatial_norm is not None:
|
| 489 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 490 |
-
|
| 491 |
-
input_ndim = hidden_states.ndim
|
| 492 |
-
|
| 493 |
-
if input_ndim == 4:
|
| 494 |
-
batch_size, channel, height, width = hidden_states.shape
|
| 495 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 496 |
-
|
| 497 |
-
batch_size, sequence_length, _ = (
|
| 498 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 499 |
-
)
|
| 500 |
-
|
| 501 |
-
if attention_mask is not None:
|
| 502 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 503 |
-
# scaled_dot_product_attention expects attention_mask shape to be
|
| 504 |
-
# (batch, heads, source_length, target_length)
|
| 505 |
-
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
| 506 |
-
|
| 507 |
-
if attn.group_norm is not None:
|
| 508 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 509 |
-
|
| 510 |
-
query = attn.to_q(hidden_states)
|
| 511 |
-
|
| 512 |
-
if encoder_hidden_states is None:
|
| 513 |
-
encoder_hidden_states = hidden_states
|
| 514 |
-
else:
|
| 515 |
-
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
| 516 |
-
encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
|
| 517 |
-
if attn.norm_cross:
|
| 518 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 519 |
-
|
| 520 |
-
key = attn.to_k(encoder_hidden_states)
|
| 521 |
-
value = attn.to_v(encoder_hidden_states)
|
| 522 |
-
|
| 523 |
-
inner_dim = key.shape[-1]
|
| 524 |
-
head_dim = inner_dim // attn.heads
|
| 525 |
-
|
| 526 |
-
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 527 |
-
|
| 528 |
-
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 529 |
-
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 530 |
-
|
| 531 |
-
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 532 |
-
# TODO: add support for attn.scale when we move to Torch 2.1
|
| 533 |
-
hidden_states = F.scaled_dot_product_attention(
|
| 534 |
-
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
| 535 |
-
)
|
| 536 |
-
|
| 537 |
-
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 538 |
-
hidden_states = hidden_states.to(query.dtype)
|
| 539 |
-
|
| 540 |
-
# linear proj
|
| 541 |
-
hidden_states = attn.to_out[0](hidden_states)
|
| 542 |
-
# dropout
|
| 543 |
-
hidden_states = attn.to_out[1](hidden_states)
|
| 544 |
-
|
| 545 |
-
if input_ndim == 4:
|
| 546 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 547 |
-
|
| 548 |
-
if attn.residual_connection:
|
| 549 |
-
hidden_states = hidden_states + residual
|
| 550 |
-
|
| 551 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
| 552 |
-
|
| 553 |
-
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ip_adapter/ip_adapter.py
DELETED
|
@@ -1,273 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
from typing import List
|
| 3 |
-
|
| 4 |
-
import torch
|
| 5 |
-
from diffusers import StableDiffusionPipeline
|
| 6 |
-
from diffusers.pipelines.controlnet import MultiControlNetModel
|
| 7 |
-
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
|
| 8 |
-
from PIL import Image
|
| 9 |
-
|
| 10 |
-
from .utils import is_torch2_available
|
| 11 |
-
if is_torch2_available():
|
| 12 |
-
from .attention_processor import IPAttnProcessor2_0 as IPAttnProcessor, AttnProcessor2_0 as AttnProcessor, CNAttnProcessor2_0 as CNAttnProcessor
|
| 13 |
-
else:
|
| 14 |
-
from .attention_processor import IPAttnProcessor, AttnProcessor, CNAttnProcessor
|
| 15 |
-
from .resampler import Resampler
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
class ImageProjModel(torch.nn.Module):
|
| 19 |
-
"""Projection Model"""
|
| 20 |
-
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
|
| 21 |
-
super().__init__()
|
| 22 |
-
|
| 23 |
-
self.cross_attention_dim = cross_attention_dim
|
| 24 |
-
self.clip_extra_context_tokens = clip_extra_context_tokens
|
| 25 |
-
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
|
| 26 |
-
self.norm = torch.nn.LayerNorm(cross_attention_dim)
|
| 27 |
-
|
| 28 |
-
def forward(self, image_embeds):
|
| 29 |
-
embeds = image_embeds
|
| 30 |
-
clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens, self.cross_attention_dim)
|
| 31 |
-
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
|
| 32 |
-
return clip_extra_context_tokens
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
class IPAdapter:
|
| 36 |
-
|
| 37 |
-
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4):
|
| 38 |
-
|
| 39 |
-
self.device = device
|
| 40 |
-
self.image_encoder_path = image_encoder_path
|
| 41 |
-
self.ip_ckpt = ip_ckpt
|
| 42 |
-
self.num_tokens = num_tokens
|
| 43 |
-
|
| 44 |
-
self.pipe = sd_pipe.to(self.device)
|
| 45 |
-
self.set_ip_adapter()
|
| 46 |
-
|
| 47 |
-
# load image encoder
|
| 48 |
-
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(self.device, dtype=torch.bfloat16)
|
| 49 |
-
self.clip_image_processor = CLIPImageProcessor()
|
| 50 |
-
# image proj model
|
| 51 |
-
self.image_proj_model = self.init_proj()
|
| 52 |
-
self.load_ip_adapter()
|
| 53 |
-
|
| 54 |
-
def init_proj(self):
|
| 55 |
-
image_proj_model = ImageProjModel(
|
| 56 |
-
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
|
| 57 |
-
clip_embeddings_dim=self.image_encoder.config.projection_dim,
|
| 58 |
-
clip_extra_context_tokens=self.num_tokens,
|
| 59 |
-
).to(self.device, dtype=torch.bfloat16)
|
| 60 |
-
return image_proj_model
|
| 61 |
-
|
| 62 |
-
def set_ip_adapter(self):
|
| 63 |
-
unet = self.pipe.unet
|
| 64 |
-
attn_procs = {}
|
| 65 |
-
for name in unet.attn_processors.keys():
|
| 66 |
-
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
| 67 |
-
if name.startswith("mid_block"):
|
| 68 |
-
hidden_size = unet.config.block_out_channels[-1]
|
| 69 |
-
elif name.startswith("up_blocks"):
|
| 70 |
-
block_id = int(name[len("up_blocks.")])
|
| 71 |
-
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
| 72 |
-
elif name.startswith("down_blocks"):
|
| 73 |
-
block_id = int(name[len("down_blocks.")])
|
| 74 |
-
hidden_size = unet.config.block_out_channels[block_id]
|
| 75 |
-
if cross_attention_dim is None:
|
| 76 |
-
attn_procs[name] = AttnProcessor()
|
| 77 |
-
else:
|
| 78 |
-
attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim,
|
| 79 |
-
scale=1.0,num_tokens= self.num_tokens).to(self.device, dtype=torch.bfloat16)
|
| 80 |
-
unet.set_attn_processor(attn_procs)
|
| 81 |
-
if hasattr(self.pipe, "controlnet"):
|
| 82 |
-
if isinstance(self.pipe.controlnet, MultiControlNetModel):
|
| 83 |
-
for controlnet in self.pipe.controlnet.nets:
|
| 84 |
-
controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
|
| 85 |
-
else:
|
| 86 |
-
self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
|
| 87 |
-
|
| 88 |
-
def update_state_dict(self, state_dict):
|
| 89 |
-
image_proj_dict = {}
|
| 90 |
-
ip_adapter_dict = {}
|
| 91 |
-
|
| 92 |
-
for k in state_dict.keys():
|
| 93 |
-
if k.startswith("image_proj_model"):
|
| 94 |
-
image_proj_dict[k.replace("image_proj_model.", "")] = state_dict[k]
|
| 95 |
-
if k.startswith("adapter_modules"):
|
| 96 |
-
ip_adapter_dict[k.replace("adapter_modules.", "")] = state_dict[k]
|
| 97 |
-
|
| 98 |
-
dict = {'image_proj': image_proj_dict,
|
| 99 |
-
'ip_adapter' : ip_adapter_dict
|
| 100 |
-
}
|
| 101 |
-
return dict
|
| 102 |
-
|
| 103 |
-
def load_ip_adapter(self):
|
| 104 |
-
state_dict = torch.load(self.ip_ckpt, map_location="cpu")
|
| 105 |
-
if "image_proj_model.proj.weight" in state_dict.keys():
|
| 106 |
-
state_dict = self.update_state_dict(state_dict)
|
| 107 |
-
self.image_proj_model.load_state_dict(state_dict["image_proj"])
|
| 108 |
-
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
|
| 109 |
-
ip_layers.load_state_dict(state_dict["ip_adapter"])
|
| 110 |
-
|
| 111 |
-
@torch.inference_mode()
|
| 112 |
-
def get_image_embeds(self, pil_image):
|
| 113 |
-
if isinstance(pil_image, Image.Image):
|
| 114 |
-
pil_image = [pil_image]
|
| 115 |
-
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
| 116 |
-
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.bfloat16)).image_embeds
|
| 117 |
-
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
| 118 |
-
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds))
|
| 119 |
-
return image_prompt_embeds, uncond_image_prompt_embeds
|
| 120 |
-
|
| 121 |
-
def set_scale(self, scale):
|
| 122 |
-
for attn_processor in self.pipe.unet.attn_processors.values():
|
| 123 |
-
if isinstance(attn_processor, IPAttnProcessor):
|
| 124 |
-
attn_processor.scale = scale
|
| 125 |
-
|
| 126 |
-
def generate(
|
| 127 |
-
self,
|
| 128 |
-
pil_image,
|
| 129 |
-
prompt=None,
|
| 130 |
-
negative_prompt=None,
|
| 131 |
-
scale=1.0,
|
| 132 |
-
num_samples=4,
|
| 133 |
-
seed=-1,
|
| 134 |
-
guidance_scale=7.5,
|
| 135 |
-
num_inference_steps=30,
|
| 136 |
-
**kwargs,
|
| 137 |
-
):
|
| 138 |
-
self.set_scale(scale)
|
| 139 |
-
|
| 140 |
-
if isinstance(pil_image, List):
|
| 141 |
-
num_prompts = len(pil_image)
|
| 142 |
-
else:
|
| 143 |
-
num_prompts = 1
|
| 144 |
-
|
| 145 |
-
# if isinstance(pil_image, Image.Image):
|
| 146 |
-
# num_prompts = 1
|
| 147 |
-
# else:
|
| 148 |
-
# num_prompts = len(pil_image)
|
| 149 |
-
# print("num promp", num_prompts)
|
| 150 |
-
|
| 151 |
-
if prompt is None:
|
| 152 |
-
prompt = "best quality, high quality"
|
| 153 |
-
if negative_prompt is None:
|
| 154 |
-
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
| 155 |
-
|
| 156 |
-
if not isinstance(prompt, List):
|
| 157 |
-
prompt = [prompt] * num_prompts
|
| 158 |
-
if not isinstance(negative_prompt, List):
|
| 159 |
-
negative_prompt = [negative_prompt] * num_prompts
|
| 160 |
-
|
| 161 |
-
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image)
|
| 162 |
-
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
| 163 |
-
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
| 164 |
-
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
| 165 |
-
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
| 166 |
-
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
| 167 |
-
|
| 168 |
-
with torch.inference_mode():
|
| 169 |
-
prompt_embeds = self.pipe._encode_prompt(
|
| 170 |
-
prompt, device=self.device, num_images_per_prompt=num_samples, do_classifier_free_guidance=True, negative_prompt=negative_prompt)
|
| 171 |
-
negative_prompt_embeds_, prompt_embeds_ = prompt_embeds.chunk(2)
|
| 172 |
-
|
| 173 |
-
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
|
| 174 |
-
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
|
| 175 |
-
|
| 176 |
-
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
|
| 177 |
-
images = self.pipe(
|
| 178 |
-
prompt_embeds=prompt_embeds,
|
| 179 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
| 180 |
-
guidance_scale=guidance_scale,
|
| 181 |
-
num_inference_steps=num_inference_steps,
|
| 182 |
-
generator=generator,
|
| 183 |
-
**kwargs,
|
| 184 |
-
).images
|
| 185 |
-
|
| 186 |
-
return images
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
class IPAdapterXL(IPAdapter):
|
| 190 |
-
"""SDXL"""
|
| 191 |
-
|
| 192 |
-
def generate(
|
| 193 |
-
self,
|
| 194 |
-
pil_image,
|
| 195 |
-
prompt=None,
|
| 196 |
-
negative_prompt=None,
|
| 197 |
-
scale=1.0,
|
| 198 |
-
num_samples=4,
|
| 199 |
-
seed=-1,
|
| 200 |
-
num_inference_steps=30,
|
| 201 |
-
**kwargs,
|
| 202 |
-
):
|
| 203 |
-
self.set_scale(scale)
|
| 204 |
-
|
| 205 |
-
if isinstance(pil_image, Image.Image):
|
| 206 |
-
num_prompts = 1
|
| 207 |
-
else:
|
| 208 |
-
num_prompts = len(pil_image)
|
| 209 |
-
|
| 210 |
-
if prompt is None:
|
| 211 |
-
prompt = "best quality, high quality"
|
| 212 |
-
if negative_prompt is None:
|
| 213 |
-
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
| 214 |
-
|
| 215 |
-
if not isinstance(prompt, List):
|
| 216 |
-
prompt = [prompt] * num_prompts
|
| 217 |
-
if not isinstance(negative_prompt, List):
|
| 218 |
-
negative_prompt = [negative_prompt] * num_prompts
|
| 219 |
-
|
| 220 |
-
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image)
|
| 221 |
-
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
| 222 |
-
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
| 223 |
-
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
| 224 |
-
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
| 225 |
-
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
| 226 |
-
|
| 227 |
-
with torch.inference_mode():
|
| 228 |
-
prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = self.pipe.encode_prompt(
|
| 229 |
-
prompt, num_images_per_prompt=num_samples, do_classifier_free_guidance=True, negative_prompt=negative_prompt)
|
| 230 |
-
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
|
| 231 |
-
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
|
| 232 |
-
|
| 233 |
-
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
|
| 234 |
-
images = self.pipe(
|
| 235 |
-
prompt_embeds=prompt_embeds,
|
| 236 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
| 237 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 238 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 239 |
-
num_inference_steps=num_inference_steps,
|
| 240 |
-
generator=generator,
|
| 241 |
-
**kwargs,
|
| 242 |
-
).images
|
| 243 |
-
|
| 244 |
-
return images
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
class IPAdapterPlus(IPAdapter):
|
| 248 |
-
"""IP-Adapter with fine-grained features"""
|
| 249 |
-
|
| 250 |
-
def init_proj(self):
|
| 251 |
-
image_proj_model = Resampler(
|
| 252 |
-
dim=self.pipe.unet.config.cross_attention_dim,
|
| 253 |
-
depth=4,
|
| 254 |
-
dim_head=64,
|
| 255 |
-
heads=12,
|
| 256 |
-
num_queries=self.num_tokens,
|
| 257 |
-
embedding_dim=self.image_encoder.config.hidden_size,
|
| 258 |
-
output_dim=self.pipe.unet.config.cross_attention_dim,
|
| 259 |
-
ff_mult=4
|
| 260 |
-
).to(self.device, dtype=torch.bfloat16)
|
| 261 |
-
return image_proj_model
|
| 262 |
-
|
| 263 |
-
@torch.inference_mode()
|
| 264 |
-
def get_image_embeds(self, pil_image):
|
| 265 |
-
if isinstance(pil_image, Image.Image):
|
| 266 |
-
pil_image = [pil_image]
|
| 267 |
-
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
| 268 |
-
clip_image = clip_image.to(self.device, dtype=torch.bfloat16)
|
| 269 |
-
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
| 270 |
-
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
| 271 |
-
uncond_clip_image_embeds = self.image_encoder(torch.zeros_like(clip_image), output_hidden_states=True).hidden_states[-2]
|
| 272 |
-
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
|
| 273 |
-
return image_prompt_embeds, uncond_image_prompt_embeds
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ip_adapter/resampler.py
DELETED
|
@@ -1,121 +0,0 @@
|
|
| 1 |
-
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
|
| 2 |
-
import math
|
| 3 |
-
|
| 4 |
-
import torch
|
| 5 |
-
import torch.nn as nn
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
# FFN
|
| 9 |
-
def FeedForward(dim, mult=4):
|
| 10 |
-
inner_dim = int(dim * mult)
|
| 11 |
-
return nn.Sequential(
|
| 12 |
-
nn.LayerNorm(dim),
|
| 13 |
-
nn.Linear(dim, inner_dim, bias=False),
|
| 14 |
-
nn.GELU(),
|
| 15 |
-
nn.Linear(inner_dim, dim, bias=False),
|
| 16 |
-
)
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
def reshape_tensor(x, heads):
|
| 20 |
-
bs, length, width = x.shape
|
| 21 |
-
#(bs, length, width) --> (bs, length, n_heads, dim_per_head)
|
| 22 |
-
x = x.view(bs, length, heads, -1)
|
| 23 |
-
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
| 24 |
-
x = x.transpose(1, 2)
|
| 25 |
-
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
|
| 26 |
-
x = x.reshape(bs, heads, length, -1)
|
| 27 |
-
return x
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
class PerceiverAttention(nn.Module):
|
| 31 |
-
def __init__(self, *, dim, dim_head=64, heads=8):
|
| 32 |
-
super().__init__()
|
| 33 |
-
self.scale = dim_head**-0.5
|
| 34 |
-
self.dim_head = dim_head
|
| 35 |
-
self.heads = heads
|
| 36 |
-
inner_dim = dim_head * heads
|
| 37 |
-
|
| 38 |
-
self.norm1 = nn.LayerNorm(dim)
|
| 39 |
-
self.norm2 = nn.LayerNorm(dim)
|
| 40 |
-
|
| 41 |
-
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
| 42 |
-
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
| 43 |
-
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
def forward(self, x, latents):
|
| 47 |
-
"""
|
| 48 |
-
Args:
|
| 49 |
-
x (torch.Tensor): image features
|
| 50 |
-
shape (b, n1, D)
|
| 51 |
-
latent (torch.Tensor): latent features
|
| 52 |
-
shape (b, n2, D)
|
| 53 |
-
"""
|
| 54 |
-
x = self.norm1(x)
|
| 55 |
-
latents = self.norm2(latents)
|
| 56 |
-
|
| 57 |
-
b, l, _ = latents.shape
|
| 58 |
-
|
| 59 |
-
q = self.to_q(latents)
|
| 60 |
-
kv_input = torch.cat((x, latents), dim=-2)
|
| 61 |
-
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
| 62 |
-
|
| 63 |
-
q = reshape_tensor(q, self.heads)
|
| 64 |
-
k = reshape_tensor(k, self.heads)
|
| 65 |
-
v = reshape_tensor(v, self.heads)
|
| 66 |
-
|
| 67 |
-
# attention
|
| 68 |
-
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
| 69 |
-
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
| 70 |
-
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
| 71 |
-
out = weight @ v
|
| 72 |
-
|
| 73 |
-
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
| 74 |
-
|
| 75 |
-
return self.to_out(out)
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
class Resampler(nn.Module):
|
| 79 |
-
def __init__(
|
| 80 |
-
self,
|
| 81 |
-
dim=1024,
|
| 82 |
-
depth=8,
|
| 83 |
-
dim_head=64,
|
| 84 |
-
heads=16,
|
| 85 |
-
num_queries=8,
|
| 86 |
-
embedding_dim=768,
|
| 87 |
-
output_dim=1024,
|
| 88 |
-
ff_mult=4,
|
| 89 |
-
):
|
| 90 |
-
super().__init__()
|
| 91 |
-
|
| 92 |
-
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
| 93 |
-
|
| 94 |
-
self.proj_in = nn.Linear(embedding_dim, dim)
|
| 95 |
-
|
| 96 |
-
self.proj_out = nn.Linear(dim, output_dim)
|
| 97 |
-
self.norm_out = nn.LayerNorm(output_dim)
|
| 98 |
-
|
| 99 |
-
self.layers = nn.ModuleList([])
|
| 100 |
-
for _ in range(depth):
|
| 101 |
-
self.layers.append(
|
| 102 |
-
nn.ModuleList(
|
| 103 |
-
[
|
| 104 |
-
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
| 105 |
-
FeedForward(dim=dim, mult=ff_mult),
|
| 106 |
-
]
|
| 107 |
-
)
|
| 108 |
-
)
|
| 109 |
-
|
| 110 |
-
def forward(self, x):
|
| 111 |
-
|
| 112 |
-
latents = self.latents.repeat(x.size(0), 1, 1)
|
| 113 |
-
|
| 114 |
-
x = self.proj_in(x)
|
| 115 |
-
|
| 116 |
-
for attn, ff in self.layers:
|
| 117 |
-
latents = attn(x, latents) + latents
|
| 118 |
-
latents = ff(latents) + latents
|
| 119 |
-
|
| 120 |
-
latents = self.proj_out(latents)
|
| 121 |
-
return self.norm_out(latents)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ip_adapter/utils.py
DELETED
|
@@ -1,5 +0,0 @@
|
|
| 1 |
-
import torch.nn.functional as F
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
def is_torch2_available():
|
| 5 |
-
return hasattr(F, "scaled_dot_product_attention")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|