Spaces:
Sleeping
Sleeping
Delete ip_adapter
Browse files- ip_adapter/__init__.py +0 -1
- ip_adapter/__pycache__/__init__.cpython-310.pyc +0 -0
- ip_adapter/__pycache__/attention_processor.cpython-310.pyc +0 -0
- ip_adapter/__pycache__/ip_adapter.cpython-310.pyc +0 -0
- ip_adapter/__pycache__/resampler.cpython-310.pyc +0 -0
- ip_adapter/__pycache__/utils.cpython-310.pyc +0 -0
- ip_adapter/attention_processor.py +0 -553
- ip_adapter/ip_adapter.py +0 -273
- ip_adapter/resampler.py +0 -121
- ip_adapter/utils.py +0 -5
ip_adapter/__init__.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
from .ip_adapter import IPAdapter, IPAdapterXL, IPAdapterPlus
|
|
|
|
ip_adapter/__pycache__/__init__.cpython-310.pyc
DELETED
Binary file (234 Bytes)
|
|
ip_adapter/__pycache__/attention_processor.cpython-310.pyc
DELETED
Binary file (9.71 kB)
|
|
ip_adapter/__pycache__/ip_adapter.cpython-310.pyc
DELETED
Binary file (8.17 kB)
|
|
ip_adapter/__pycache__/resampler.cpython-310.pyc
DELETED
Binary file (3.17 kB)
|
|
ip_adapter/__pycache__/utils.cpython-310.pyc
DELETED
Binary file (362 Bytes)
|
|
ip_adapter/attention_processor.py
DELETED
@@ -1,553 +0,0 @@
|
|
1 |
-
# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
import torch.nn.functional as F
|
5 |
-
|
6 |
-
|
7 |
-
class AttnProcessor(nn.Module):
|
8 |
-
r"""
|
9 |
-
Default processor for performing attention-related computations.
|
10 |
-
"""
|
11 |
-
def __init__(
|
12 |
-
self,
|
13 |
-
hidden_size=None,
|
14 |
-
cross_attention_dim=None,
|
15 |
-
):
|
16 |
-
super().__init__()
|
17 |
-
|
18 |
-
def __call__(
|
19 |
-
self,
|
20 |
-
attn,
|
21 |
-
hidden_states,
|
22 |
-
encoder_hidden_states=None,
|
23 |
-
attention_mask=None,
|
24 |
-
temb=None,
|
25 |
-
):
|
26 |
-
residual = hidden_states
|
27 |
-
|
28 |
-
if attn.spatial_norm is not None:
|
29 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
30 |
-
|
31 |
-
input_ndim = hidden_states.ndim
|
32 |
-
|
33 |
-
if input_ndim == 4:
|
34 |
-
batch_size, channel, height, width = hidden_states.shape
|
35 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
36 |
-
|
37 |
-
batch_size, sequence_length, _ = (
|
38 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
39 |
-
)
|
40 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
41 |
-
|
42 |
-
if attn.group_norm is not None:
|
43 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
44 |
-
|
45 |
-
query = attn.to_q(hidden_states)
|
46 |
-
|
47 |
-
if encoder_hidden_states is None:
|
48 |
-
encoder_hidden_states = hidden_states
|
49 |
-
elif attn.norm_cross:
|
50 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
51 |
-
|
52 |
-
key = attn.to_k(encoder_hidden_states)
|
53 |
-
value = attn.to_v(encoder_hidden_states)
|
54 |
-
|
55 |
-
query = attn.head_to_batch_dim(query)
|
56 |
-
key = attn.head_to_batch_dim(key)
|
57 |
-
value = attn.head_to_batch_dim(value)
|
58 |
-
|
59 |
-
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
60 |
-
hidden_states = torch.bmm(attention_probs, value)
|
61 |
-
hidden_states = attn.batch_to_head_dim(hidden_states)
|
62 |
-
|
63 |
-
# linear proj
|
64 |
-
hidden_states = attn.to_out[0](hidden_states)
|
65 |
-
# dropout
|
66 |
-
hidden_states = attn.to_out[1](hidden_states)
|
67 |
-
|
68 |
-
if input_ndim == 4:
|
69 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
70 |
-
|
71 |
-
if attn.residual_connection:
|
72 |
-
hidden_states = hidden_states + residual
|
73 |
-
|
74 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
75 |
-
|
76 |
-
return hidden_states
|
77 |
-
|
78 |
-
|
79 |
-
class IPAttnProcessor(nn.Module):
|
80 |
-
r"""
|
81 |
-
Attention processor for IP-Adapater.
|
82 |
-
Args:
|
83 |
-
hidden_size (`int`):
|
84 |
-
The hidden size of the attention layer.
|
85 |
-
cross_attention_dim (`int`):
|
86 |
-
The number of channels in the `encoder_hidden_states`.
|
87 |
-
scale (`float`, defaults to 1.0):
|
88 |
-
the weight scale of image prompt.
|
89 |
-
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
90 |
-
The context length of the image features.
|
91 |
-
"""
|
92 |
-
|
93 |
-
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
|
94 |
-
super().__init__()
|
95 |
-
|
96 |
-
self.hidden_size = hidden_size
|
97 |
-
self.cross_attention_dim = cross_attention_dim
|
98 |
-
self.scale = scale
|
99 |
-
self.num_tokens = num_tokens
|
100 |
-
|
101 |
-
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
102 |
-
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
103 |
-
|
104 |
-
def __call__(
|
105 |
-
self,
|
106 |
-
attn,
|
107 |
-
hidden_states,
|
108 |
-
encoder_hidden_states=None,
|
109 |
-
attention_mask=None,
|
110 |
-
temb=None,
|
111 |
-
):
|
112 |
-
residual = hidden_states
|
113 |
-
|
114 |
-
if attn.spatial_norm is not None:
|
115 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
116 |
-
|
117 |
-
input_ndim = hidden_states.ndim
|
118 |
-
|
119 |
-
if input_ndim == 4:
|
120 |
-
batch_size, channel, height, width = hidden_states.shape
|
121 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
122 |
-
|
123 |
-
batch_size, sequence_length, _ = (
|
124 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
125 |
-
)
|
126 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
127 |
-
|
128 |
-
if attn.group_norm is not None:
|
129 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
130 |
-
|
131 |
-
query = attn.to_q(hidden_states)
|
132 |
-
|
133 |
-
if encoder_hidden_states is None:
|
134 |
-
encoder_hidden_states = hidden_states
|
135 |
-
else:
|
136 |
-
# get encoder_hidden_states, ip_hidden_states
|
137 |
-
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
138 |
-
encoder_hidden_states, ip_hidden_states = encoder_hidden_states[:, :end_pos, :], encoder_hidden_states[:, end_pos:, :]
|
139 |
-
if attn.norm_cross:
|
140 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
141 |
-
|
142 |
-
key = attn.to_k(encoder_hidden_states)
|
143 |
-
value = attn.to_v(encoder_hidden_states)
|
144 |
-
|
145 |
-
query = attn.head_to_batch_dim(query)
|
146 |
-
key = attn.head_to_batch_dim(key)
|
147 |
-
value = attn.head_to_batch_dim(value)
|
148 |
-
|
149 |
-
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
150 |
-
hidden_states = torch.bmm(attention_probs, value)
|
151 |
-
hidden_states = attn.batch_to_head_dim(hidden_states)
|
152 |
-
|
153 |
-
# for ip-adapter
|
154 |
-
ip_key = self.to_k_ip(ip_hidden_states)
|
155 |
-
ip_value = self.to_v_ip(ip_hidden_states)
|
156 |
-
|
157 |
-
ip_key = attn.head_to_batch_dim(ip_key)
|
158 |
-
ip_value = attn.head_to_batch_dim(ip_value)
|
159 |
-
|
160 |
-
ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
|
161 |
-
ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
|
162 |
-
ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
|
163 |
-
|
164 |
-
hidden_states = hidden_states + self.scale * ip_hidden_states
|
165 |
-
|
166 |
-
# linear proj
|
167 |
-
hidden_states = attn.to_out[0](hidden_states)
|
168 |
-
# dropout
|
169 |
-
hidden_states = attn.to_out[1](hidden_states)
|
170 |
-
|
171 |
-
if input_ndim == 4:
|
172 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
173 |
-
|
174 |
-
if attn.residual_connection:
|
175 |
-
hidden_states = hidden_states + residual
|
176 |
-
|
177 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
178 |
-
|
179 |
-
return hidden_states
|
180 |
-
|
181 |
-
|
182 |
-
class AttnProcessor2_0(torch.nn.Module):
|
183 |
-
r"""
|
184 |
-
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
185 |
-
"""
|
186 |
-
def __init__(
|
187 |
-
self,
|
188 |
-
hidden_size=None,
|
189 |
-
cross_attention_dim=None,
|
190 |
-
):
|
191 |
-
super().__init__()
|
192 |
-
if not hasattr(F, "scaled_dot_product_attention"):
|
193 |
-
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
194 |
-
|
195 |
-
def __call__(
|
196 |
-
self,
|
197 |
-
attn,
|
198 |
-
hidden_states,
|
199 |
-
encoder_hidden_states=None,
|
200 |
-
attention_mask=None,
|
201 |
-
temb=None,
|
202 |
-
):
|
203 |
-
residual = hidden_states
|
204 |
-
|
205 |
-
if attn.spatial_norm is not None:
|
206 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
207 |
-
|
208 |
-
input_ndim = hidden_states.ndim
|
209 |
-
|
210 |
-
if input_ndim == 4:
|
211 |
-
batch_size, channel, height, width = hidden_states.shape
|
212 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
213 |
-
|
214 |
-
batch_size, sequence_length, _ = (
|
215 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
216 |
-
)
|
217 |
-
|
218 |
-
if attention_mask is not None:
|
219 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
220 |
-
# scaled_dot_product_attention expects attention_mask shape to be
|
221 |
-
# (batch, heads, source_length, target_length)
|
222 |
-
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
223 |
-
|
224 |
-
if attn.group_norm is not None:
|
225 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
226 |
-
|
227 |
-
query = attn.to_q(hidden_states)
|
228 |
-
|
229 |
-
if encoder_hidden_states is None:
|
230 |
-
encoder_hidden_states = hidden_states
|
231 |
-
elif attn.norm_cross:
|
232 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
233 |
-
|
234 |
-
key = attn.to_k(encoder_hidden_states)
|
235 |
-
value = attn.to_v(encoder_hidden_states)
|
236 |
-
|
237 |
-
inner_dim = key.shape[-1]
|
238 |
-
head_dim = inner_dim // attn.heads
|
239 |
-
|
240 |
-
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
241 |
-
|
242 |
-
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
243 |
-
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
244 |
-
|
245 |
-
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
246 |
-
# TODO: add support for attn.scale when we move to Torch 2.1
|
247 |
-
hidden_states = F.scaled_dot_product_attention(
|
248 |
-
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
249 |
-
)
|
250 |
-
|
251 |
-
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
252 |
-
hidden_states = hidden_states.to(query.dtype)
|
253 |
-
|
254 |
-
# linear proj
|
255 |
-
hidden_states = attn.to_out[0](hidden_states)
|
256 |
-
# dropout
|
257 |
-
hidden_states = attn.to_out[1](hidden_states)
|
258 |
-
|
259 |
-
if input_ndim == 4:
|
260 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
261 |
-
|
262 |
-
if attn.residual_connection:
|
263 |
-
hidden_states = hidden_states + residual
|
264 |
-
|
265 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
266 |
-
|
267 |
-
return hidden_states
|
268 |
-
|
269 |
-
|
270 |
-
class IPAttnProcessor2_0(torch.nn.Module):
|
271 |
-
r"""
|
272 |
-
Attention processor for IP-Adapater for PyTorch 2.0.
|
273 |
-
Args:
|
274 |
-
hidden_size (`int`):
|
275 |
-
The hidden size of the attention layer.
|
276 |
-
cross_attention_dim (`int`):
|
277 |
-
The number of channels in the `encoder_hidden_states`.
|
278 |
-
scale (`float`, defaults to 1.0):
|
279 |
-
the weight scale of image prompt.
|
280 |
-
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
281 |
-
The context length of the image features.
|
282 |
-
"""
|
283 |
-
|
284 |
-
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
|
285 |
-
super().__init__()
|
286 |
-
|
287 |
-
if not hasattr(F, "scaled_dot_product_attention"):
|
288 |
-
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
289 |
-
|
290 |
-
self.hidden_size = hidden_size
|
291 |
-
self.cross_attention_dim = cross_attention_dim
|
292 |
-
self.scale = scale
|
293 |
-
self.num_tokens = num_tokens
|
294 |
-
|
295 |
-
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
296 |
-
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
297 |
-
|
298 |
-
def __call__(
|
299 |
-
self,
|
300 |
-
attn,
|
301 |
-
hidden_states,
|
302 |
-
encoder_hidden_states=None,
|
303 |
-
attention_mask=None,
|
304 |
-
temb=None,
|
305 |
-
):
|
306 |
-
residual = hidden_states
|
307 |
-
|
308 |
-
if attn.spatial_norm is not None:
|
309 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
310 |
-
|
311 |
-
input_ndim = hidden_states.ndim
|
312 |
-
|
313 |
-
if input_ndim == 4:
|
314 |
-
batch_size, channel, height, width = hidden_states.shape
|
315 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
316 |
-
|
317 |
-
batch_size, sequence_length, _ = (
|
318 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
319 |
-
)
|
320 |
-
|
321 |
-
if attention_mask is not None:
|
322 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
323 |
-
# scaled_dot_product_attention expects attention_mask shape to be
|
324 |
-
# (batch, heads, source_length, target_length)
|
325 |
-
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
326 |
-
|
327 |
-
if attn.group_norm is not None:
|
328 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
329 |
-
|
330 |
-
query = attn.to_q(hidden_states)
|
331 |
-
|
332 |
-
if encoder_hidden_states is None:
|
333 |
-
encoder_hidden_states = hidden_states
|
334 |
-
else:
|
335 |
-
# get encoder_hidden_states, ip_hidden_states
|
336 |
-
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
337 |
-
encoder_hidden_states, ip_hidden_states = encoder_hidden_states[:, :end_pos, :], encoder_hidden_states[:, end_pos:, :]
|
338 |
-
if attn.norm_cross:
|
339 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
340 |
-
|
341 |
-
key = attn.to_k(encoder_hidden_states)
|
342 |
-
value = attn.to_v(encoder_hidden_states)
|
343 |
-
|
344 |
-
inner_dim = key.shape[-1]
|
345 |
-
head_dim = inner_dim // attn.heads
|
346 |
-
|
347 |
-
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
348 |
-
|
349 |
-
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
350 |
-
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
351 |
-
|
352 |
-
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
353 |
-
# TODO: add support for attn.scale when we move to Torch 2.1
|
354 |
-
hidden_states = F.scaled_dot_product_attention(
|
355 |
-
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
356 |
-
)
|
357 |
-
|
358 |
-
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
359 |
-
hidden_states = hidden_states.to(query.dtype)
|
360 |
-
|
361 |
-
# for ip-adapter
|
362 |
-
ip_key = self.to_k_ip(ip_hidden_states)
|
363 |
-
ip_value = self.to_v_ip(ip_hidden_states)
|
364 |
-
|
365 |
-
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
366 |
-
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
367 |
-
|
368 |
-
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
369 |
-
# TODO: add support for attn.scale when we move to Torch 2.1
|
370 |
-
ip_hidden_states = F.scaled_dot_product_attention(
|
371 |
-
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
372 |
-
)
|
373 |
-
|
374 |
-
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
375 |
-
ip_hidden_states = ip_hidden_states.to(query.dtype)
|
376 |
-
|
377 |
-
hidden_states = hidden_states + self.scale * ip_hidden_states
|
378 |
-
|
379 |
-
# linear proj
|
380 |
-
hidden_states = attn.to_out[0](hidden_states)
|
381 |
-
# dropout
|
382 |
-
hidden_states = attn.to_out[1](hidden_states)
|
383 |
-
|
384 |
-
if input_ndim == 4:
|
385 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
386 |
-
|
387 |
-
if attn.residual_connection:
|
388 |
-
hidden_states = hidden_states + residual
|
389 |
-
|
390 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
391 |
-
|
392 |
-
return hidden_states
|
393 |
-
|
394 |
-
|
395 |
-
## for controlnet
|
396 |
-
class CNAttnProcessor:
|
397 |
-
r"""
|
398 |
-
Default processor for performing attention-related computations.
|
399 |
-
"""
|
400 |
-
|
401 |
-
def __init__(self, num_tokens=4):
|
402 |
-
self.num_tokens = num_tokens
|
403 |
-
|
404 |
-
def __call__(
|
405 |
-
self,
|
406 |
-
attn,
|
407 |
-
hidden_states,
|
408 |
-
encoder_hidden_states=None,
|
409 |
-
attention_mask=None,
|
410 |
-
temb=None
|
411 |
-
):
|
412 |
-
residual = hidden_states
|
413 |
-
|
414 |
-
if attn.spatial_norm is not None:
|
415 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
416 |
-
|
417 |
-
input_ndim = hidden_states.ndim
|
418 |
-
|
419 |
-
if input_ndim == 4:
|
420 |
-
batch_size, channel, height, width = hidden_states.shape
|
421 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
422 |
-
|
423 |
-
batch_size, sequence_length, _ = (
|
424 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
425 |
-
)
|
426 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
427 |
-
|
428 |
-
if attn.group_norm is not None:
|
429 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
430 |
-
|
431 |
-
query = attn.to_q(hidden_states)
|
432 |
-
|
433 |
-
if encoder_hidden_states is None:
|
434 |
-
encoder_hidden_states = hidden_states
|
435 |
-
else:
|
436 |
-
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
437 |
-
encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
|
438 |
-
if attn.norm_cross:
|
439 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
440 |
-
|
441 |
-
key = attn.to_k(encoder_hidden_states)
|
442 |
-
value = attn.to_v(encoder_hidden_states)
|
443 |
-
|
444 |
-
query = attn.head_to_batch_dim(query)
|
445 |
-
key = attn.head_to_batch_dim(key)
|
446 |
-
value = attn.head_to_batch_dim(value)
|
447 |
-
|
448 |
-
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
449 |
-
hidden_states = torch.bmm(attention_probs, value)
|
450 |
-
hidden_states = attn.batch_to_head_dim(hidden_states)
|
451 |
-
|
452 |
-
# linear proj
|
453 |
-
hidden_states = attn.to_out[0](hidden_states)
|
454 |
-
# dropout
|
455 |
-
hidden_states = attn.to_out[1](hidden_states)
|
456 |
-
|
457 |
-
if input_ndim == 4:
|
458 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
459 |
-
|
460 |
-
if attn.residual_connection:
|
461 |
-
hidden_states = hidden_states + residual
|
462 |
-
|
463 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
464 |
-
|
465 |
-
return hidden_states
|
466 |
-
|
467 |
-
|
468 |
-
class CNAttnProcessor2_0:
|
469 |
-
r"""
|
470 |
-
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
471 |
-
"""
|
472 |
-
|
473 |
-
def __init__(self, num_tokens=4):
|
474 |
-
if not hasattr(F, "scaled_dot_product_attention"):
|
475 |
-
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
476 |
-
self.num_tokens = num_tokens
|
477 |
-
|
478 |
-
def __call__(
|
479 |
-
self,
|
480 |
-
attn,
|
481 |
-
hidden_states,
|
482 |
-
encoder_hidden_states=None,
|
483 |
-
attention_mask=None,
|
484 |
-
temb=None,
|
485 |
-
):
|
486 |
-
residual = hidden_states
|
487 |
-
|
488 |
-
if attn.spatial_norm is not None:
|
489 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
490 |
-
|
491 |
-
input_ndim = hidden_states.ndim
|
492 |
-
|
493 |
-
if input_ndim == 4:
|
494 |
-
batch_size, channel, height, width = hidden_states.shape
|
495 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
496 |
-
|
497 |
-
batch_size, sequence_length, _ = (
|
498 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
499 |
-
)
|
500 |
-
|
501 |
-
if attention_mask is not None:
|
502 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
503 |
-
# scaled_dot_product_attention expects attention_mask shape to be
|
504 |
-
# (batch, heads, source_length, target_length)
|
505 |
-
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
506 |
-
|
507 |
-
if attn.group_norm is not None:
|
508 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
509 |
-
|
510 |
-
query = attn.to_q(hidden_states)
|
511 |
-
|
512 |
-
if encoder_hidden_states is None:
|
513 |
-
encoder_hidden_states = hidden_states
|
514 |
-
else:
|
515 |
-
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
516 |
-
encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
|
517 |
-
if attn.norm_cross:
|
518 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
519 |
-
|
520 |
-
key = attn.to_k(encoder_hidden_states)
|
521 |
-
value = attn.to_v(encoder_hidden_states)
|
522 |
-
|
523 |
-
inner_dim = key.shape[-1]
|
524 |
-
head_dim = inner_dim // attn.heads
|
525 |
-
|
526 |
-
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
527 |
-
|
528 |
-
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
529 |
-
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
530 |
-
|
531 |
-
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
532 |
-
# TODO: add support for attn.scale when we move to Torch 2.1
|
533 |
-
hidden_states = F.scaled_dot_product_attention(
|
534 |
-
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
535 |
-
)
|
536 |
-
|
537 |
-
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
538 |
-
hidden_states = hidden_states.to(query.dtype)
|
539 |
-
|
540 |
-
# linear proj
|
541 |
-
hidden_states = attn.to_out[0](hidden_states)
|
542 |
-
# dropout
|
543 |
-
hidden_states = attn.to_out[1](hidden_states)
|
544 |
-
|
545 |
-
if input_ndim == 4:
|
546 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
547 |
-
|
548 |
-
if attn.residual_connection:
|
549 |
-
hidden_states = hidden_states + residual
|
550 |
-
|
551 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
552 |
-
|
553 |
-
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ip_adapter/ip_adapter.py
DELETED
@@ -1,273 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from typing import List
|
3 |
-
|
4 |
-
import torch
|
5 |
-
from diffusers import StableDiffusionPipeline
|
6 |
-
from diffusers.pipelines.controlnet import MultiControlNetModel
|
7 |
-
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
|
8 |
-
from PIL import Image
|
9 |
-
|
10 |
-
from .utils import is_torch2_available
|
11 |
-
if is_torch2_available():
|
12 |
-
from .attention_processor import IPAttnProcessor2_0 as IPAttnProcessor, AttnProcessor2_0 as AttnProcessor, CNAttnProcessor2_0 as CNAttnProcessor
|
13 |
-
else:
|
14 |
-
from .attention_processor import IPAttnProcessor, AttnProcessor, CNAttnProcessor
|
15 |
-
from .resampler import Resampler
|
16 |
-
|
17 |
-
|
18 |
-
class ImageProjModel(torch.nn.Module):
|
19 |
-
"""Projection Model"""
|
20 |
-
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
|
21 |
-
super().__init__()
|
22 |
-
|
23 |
-
self.cross_attention_dim = cross_attention_dim
|
24 |
-
self.clip_extra_context_tokens = clip_extra_context_tokens
|
25 |
-
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
|
26 |
-
self.norm = torch.nn.LayerNorm(cross_attention_dim)
|
27 |
-
|
28 |
-
def forward(self, image_embeds):
|
29 |
-
embeds = image_embeds
|
30 |
-
clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens, self.cross_attention_dim)
|
31 |
-
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
|
32 |
-
return clip_extra_context_tokens
|
33 |
-
|
34 |
-
|
35 |
-
class IPAdapter:
|
36 |
-
|
37 |
-
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4):
|
38 |
-
|
39 |
-
self.device = device
|
40 |
-
self.image_encoder_path = image_encoder_path
|
41 |
-
self.ip_ckpt = ip_ckpt
|
42 |
-
self.num_tokens = num_tokens
|
43 |
-
|
44 |
-
self.pipe = sd_pipe.to(self.device)
|
45 |
-
self.set_ip_adapter()
|
46 |
-
|
47 |
-
# load image encoder
|
48 |
-
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(self.device, dtype=torch.bfloat16)
|
49 |
-
self.clip_image_processor = CLIPImageProcessor()
|
50 |
-
# image proj model
|
51 |
-
self.image_proj_model = self.init_proj()
|
52 |
-
self.load_ip_adapter()
|
53 |
-
|
54 |
-
def init_proj(self):
|
55 |
-
image_proj_model = ImageProjModel(
|
56 |
-
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
|
57 |
-
clip_embeddings_dim=self.image_encoder.config.projection_dim,
|
58 |
-
clip_extra_context_tokens=self.num_tokens,
|
59 |
-
).to(self.device, dtype=torch.bfloat16)
|
60 |
-
return image_proj_model
|
61 |
-
|
62 |
-
def set_ip_adapter(self):
|
63 |
-
unet = self.pipe.unet
|
64 |
-
attn_procs = {}
|
65 |
-
for name in unet.attn_processors.keys():
|
66 |
-
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
67 |
-
if name.startswith("mid_block"):
|
68 |
-
hidden_size = unet.config.block_out_channels[-1]
|
69 |
-
elif name.startswith("up_blocks"):
|
70 |
-
block_id = int(name[len("up_blocks.")])
|
71 |
-
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
72 |
-
elif name.startswith("down_blocks"):
|
73 |
-
block_id = int(name[len("down_blocks.")])
|
74 |
-
hidden_size = unet.config.block_out_channels[block_id]
|
75 |
-
if cross_attention_dim is None:
|
76 |
-
attn_procs[name] = AttnProcessor()
|
77 |
-
else:
|
78 |
-
attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim,
|
79 |
-
scale=1.0,num_tokens= self.num_tokens).to(self.device, dtype=torch.bfloat16)
|
80 |
-
unet.set_attn_processor(attn_procs)
|
81 |
-
if hasattr(self.pipe, "controlnet"):
|
82 |
-
if isinstance(self.pipe.controlnet, MultiControlNetModel):
|
83 |
-
for controlnet in self.pipe.controlnet.nets:
|
84 |
-
controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
|
85 |
-
else:
|
86 |
-
self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
|
87 |
-
|
88 |
-
def update_state_dict(self, state_dict):
|
89 |
-
image_proj_dict = {}
|
90 |
-
ip_adapter_dict = {}
|
91 |
-
|
92 |
-
for k in state_dict.keys():
|
93 |
-
if k.startswith("image_proj_model"):
|
94 |
-
image_proj_dict[k.replace("image_proj_model.", "")] = state_dict[k]
|
95 |
-
if k.startswith("adapter_modules"):
|
96 |
-
ip_adapter_dict[k.replace("adapter_modules.", "")] = state_dict[k]
|
97 |
-
|
98 |
-
dict = {'image_proj': image_proj_dict,
|
99 |
-
'ip_adapter' : ip_adapter_dict
|
100 |
-
}
|
101 |
-
return dict
|
102 |
-
|
103 |
-
def load_ip_adapter(self):
|
104 |
-
state_dict = torch.load(self.ip_ckpt, map_location="cpu")
|
105 |
-
if "image_proj_model.proj.weight" in state_dict.keys():
|
106 |
-
state_dict = self.update_state_dict(state_dict)
|
107 |
-
self.image_proj_model.load_state_dict(state_dict["image_proj"])
|
108 |
-
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
|
109 |
-
ip_layers.load_state_dict(state_dict["ip_adapter"])
|
110 |
-
|
111 |
-
@torch.inference_mode()
|
112 |
-
def get_image_embeds(self, pil_image):
|
113 |
-
if isinstance(pil_image, Image.Image):
|
114 |
-
pil_image = [pil_image]
|
115 |
-
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
116 |
-
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.bfloat16)).image_embeds
|
117 |
-
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
118 |
-
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds))
|
119 |
-
return image_prompt_embeds, uncond_image_prompt_embeds
|
120 |
-
|
121 |
-
def set_scale(self, scale):
|
122 |
-
for attn_processor in self.pipe.unet.attn_processors.values():
|
123 |
-
if isinstance(attn_processor, IPAttnProcessor):
|
124 |
-
attn_processor.scale = scale
|
125 |
-
|
126 |
-
def generate(
|
127 |
-
self,
|
128 |
-
pil_image,
|
129 |
-
prompt=None,
|
130 |
-
negative_prompt=None,
|
131 |
-
scale=1.0,
|
132 |
-
num_samples=4,
|
133 |
-
seed=-1,
|
134 |
-
guidance_scale=7.5,
|
135 |
-
num_inference_steps=30,
|
136 |
-
**kwargs,
|
137 |
-
):
|
138 |
-
self.set_scale(scale)
|
139 |
-
|
140 |
-
if isinstance(pil_image, List):
|
141 |
-
num_prompts = len(pil_image)
|
142 |
-
else:
|
143 |
-
num_prompts = 1
|
144 |
-
|
145 |
-
# if isinstance(pil_image, Image.Image):
|
146 |
-
# num_prompts = 1
|
147 |
-
# else:
|
148 |
-
# num_prompts = len(pil_image)
|
149 |
-
# print("num promp", num_prompts)
|
150 |
-
|
151 |
-
if prompt is None:
|
152 |
-
prompt = "best quality, high quality"
|
153 |
-
if negative_prompt is None:
|
154 |
-
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
155 |
-
|
156 |
-
if not isinstance(prompt, List):
|
157 |
-
prompt = [prompt] * num_prompts
|
158 |
-
if not isinstance(negative_prompt, List):
|
159 |
-
negative_prompt = [negative_prompt] * num_prompts
|
160 |
-
|
161 |
-
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image)
|
162 |
-
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
163 |
-
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
164 |
-
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
165 |
-
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
166 |
-
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
167 |
-
|
168 |
-
with torch.inference_mode():
|
169 |
-
prompt_embeds = self.pipe._encode_prompt(
|
170 |
-
prompt, device=self.device, num_images_per_prompt=num_samples, do_classifier_free_guidance=True, negative_prompt=negative_prompt)
|
171 |
-
negative_prompt_embeds_, prompt_embeds_ = prompt_embeds.chunk(2)
|
172 |
-
|
173 |
-
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
|
174 |
-
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
|
175 |
-
|
176 |
-
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
|
177 |
-
images = self.pipe(
|
178 |
-
prompt_embeds=prompt_embeds,
|
179 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
180 |
-
guidance_scale=guidance_scale,
|
181 |
-
num_inference_steps=num_inference_steps,
|
182 |
-
generator=generator,
|
183 |
-
**kwargs,
|
184 |
-
).images
|
185 |
-
|
186 |
-
return images
|
187 |
-
|
188 |
-
|
189 |
-
class IPAdapterXL(IPAdapter):
|
190 |
-
"""SDXL"""
|
191 |
-
|
192 |
-
def generate(
|
193 |
-
self,
|
194 |
-
pil_image,
|
195 |
-
prompt=None,
|
196 |
-
negative_prompt=None,
|
197 |
-
scale=1.0,
|
198 |
-
num_samples=4,
|
199 |
-
seed=-1,
|
200 |
-
num_inference_steps=30,
|
201 |
-
**kwargs,
|
202 |
-
):
|
203 |
-
self.set_scale(scale)
|
204 |
-
|
205 |
-
if isinstance(pil_image, Image.Image):
|
206 |
-
num_prompts = 1
|
207 |
-
else:
|
208 |
-
num_prompts = len(pil_image)
|
209 |
-
|
210 |
-
if prompt is None:
|
211 |
-
prompt = "best quality, high quality"
|
212 |
-
if negative_prompt is None:
|
213 |
-
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
214 |
-
|
215 |
-
if not isinstance(prompt, List):
|
216 |
-
prompt = [prompt] * num_prompts
|
217 |
-
if not isinstance(negative_prompt, List):
|
218 |
-
negative_prompt = [negative_prompt] * num_prompts
|
219 |
-
|
220 |
-
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image)
|
221 |
-
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
222 |
-
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
223 |
-
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
224 |
-
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
225 |
-
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
226 |
-
|
227 |
-
with torch.inference_mode():
|
228 |
-
prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = self.pipe.encode_prompt(
|
229 |
-
prompt, num_images_per_prompt=num_samples, do_classifier_free_guidance=True, negative_prompt=negative_prompt)
|
230 |
-
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
|
231 |
-
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
|
232 |
-
|
233 |
-
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
|
234 |
-
images = self.pipe(
|
235 |
-
prompt_embeds=prompt_embeds,
|
236 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
237 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
238 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
239 |
-
num_inference_steps=num_inference_steps,
|
240 |
-
generator=generator,
|
241 |
-
**kwargs,
|
242 |
-
).images
|
243 |
-
|
244 |
-
return images
|
245 |
-
|
246 |
-
|
247 |
-
class IPAdapterPlus(IPAdapter):
|
248 |
-
"""IP-Adapter with fine-grained features"""
|
249 |
-
|
250 |
-
def init_proj(self):
|
251 |
-
image_proj_model = Resampler(
|
252 |
-
dim=self.pipe.unet.config.cross_attention_dim,
|
253 |
-
depth=4,
|
254 |
-
dim_head=64,
|
255 |
-
heads=12,
|
256 |
-
num_queries=self.num_tokens,
|
257 |
-
embedding_dim=self.image_encoder.config.hidden_size,
|
258 |
-
output_dim=self.pipe.unet.config.cross_attention_dim,
|
259 |
-
ff_mult=4
|
260 |
-
).to(self.device, dtype=torch.bfloat16)
|
261 |
-
return image_proj_model
|
262 |
-
|
263 |
-
@torch.inference_mode()
|
264 |
-
def get_image_embeds(self, pil_image):
|
265 |
-
if isinstance(pil_image, Image.Image):
|
266 |
-
pil_image = [pil_image]
|
267 |
-
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
268 |
-
clip_image = clip_image.to(self.device, dtype=torch.bfloat16)
|
269 |
-
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
270 |
-
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
271 |
-
uncond_clip_image_embeds = self.image_encoder(torch.zeros_like(clip_image), output_hidden_states=True).hidden_states[-2]
|
272 |
-
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
|
273 |
-
return image_prompt_embeds, uncond_image_prompt_embeds
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ip_adapter/resampler.py
DELETED
@@ -1,121 +0,0 @@
|
|
1 |
-
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
|
2 |
-
import math
|
3 |
-
|
4 |
-
import torch
|
5 |
-
import torch.nn as nn
|
6 |
-
|
7 |
-
|
8 |
-
# FFN
|
9 |
-
def FeedForward(dim, mult=4):
|
10 |
-
inner_dim = int(dim * mult)
|
11 |
-
return nn.Sequential(
|
12 |
-
nn.LayerNorm(dim),
|
13 |
-
nn.Linear(dim, inner_dim, bias=False),
|
14 |
-
nn.GELU(),
|
15 |
-
nn.Linear(inner_dim, dim, bias=False),
|
16 |
-
)
|
17 |
-
|
18 |
-
|
19 |
-
def reshape_tensor(x, heads):
|
20 |
-
bs, length, width = x.shape
|
21 |
-
#(bs, length, width) --> (bs, length, n_heads, dim_per_head)
|
22 |
-
x = x.view(bs, length, heads, -1)
|
23 |
-
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
24 |
-
x = x.transpose(1, 2)
|
25 |
-
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
|
26 |
-
x = x.reshape(bs, heads, length, -1)
|
27 |
-
return x
|
28 |
-
|
29 |
-
|
30 |
-
class PerceiverAttention(nn.Module):
|
31 |
-
def __init__(self, *, dim, dim_head=64, heads=8):
|
32 |
-
super().__init__()
|
33 |
-
self.scale = dim_head**-0.5
|
34 |
-
self.dim_head = dim_head
|
35 |
-
self.heads = heads
|
36 |
-
inner_dim = dim_head * heads
|
37 |
-
|
38 |
-
self.norm1 = nn.LayerNorm(dim)
|
39 |
-
self.norm2 = nn.LayerNorm(dim)
|
40 |
-
|
41 |
-
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
42 |
-
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
43 |
-
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
44 |
-
|
45 |
-
|
46 |
-
def forward(self, x, latents):
|
47 |
-
"""
|
48 |
-
Args:
|
49 |
-
x (torch.Tensor): image features
|
50 |
-
shape (b, n1, D)
|
51 |
-
latent (torch.Tensor): latent features
|
52 |
-
shape (b, n2, D)
|
53 |
-
"""
|
54 |
-
x = self.norm1(x)
|
55 |
-
latents = self.norm2(latents)
|
56 |
-
|
57 |
-
b, l, _ = latents.shape
|
58 |
-
|
59 |
-
q = self.to_q(latents)
|
60 |
-
kv_input = torch.cat((x, latents), dim=-2)
|
61 |
-
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
62 |
-
|
63 |
-
q = reshape_tensor(q, self.heads)
|
64 |
-
k = reshape_tensor(k, self.heads)
|
65 |
-
v = reshape_tensor(v, self.heads)
|
66 |
-
|
67 |
-
# attention
|
68 |
-
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
69 |
-
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
70 |
-
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
71 |
-
out = weight @ v
|
72 |
-
|
73 |
-
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
74 |
-
|
75 |
-
return self.to_out(out)
|
76 |
-
|
77 |
-
|
78 |
-
class Resampler(nn.Module):
|
79 |
-
def __init__(
|
80 |
-
self,
|
81 |
-
dim=1024,
|
82 |
-
depth=8,
|
83 |
-
dim_head=64,
|
84 |
-
heads=16,
|
85 |
-
num_queries=8,
|
86 |
-
embedding_dim=768,
|
87 |
-
output_dim=1024,
|
88 |
-
ff_mult=4,
|
89 |
-
):
|
90 |
-
super().__init__()
|
91 |
-
|
92 |
-
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
93 |
-
|
94 |
-
self.proj_in = nn.Linear(embedding_dim, dim)
|
95 |
-
|
96 |
-
self.proj_out = nn.Linear(dim, output_dim)
|
97 |
-
self.norm_out = nn.LayerNorm(output_dim)
|
98 |
-
|
99 |
-
self.layers = nn.ModuleList([])
|
100 |
-
for _ in range(depth):
|
101 |
-
self.layers.append(
|
102 |
-
nn.ModuleList(
|
103 |
-
[
|
104 |
-
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
105 |
-
FeedForward(dim=dim, mult=ff_mult),
|
106 |
-
]
|
107 |
-
)
|
108 |
-
)
|
109 |
-
|
110 |
-
def forward(self, x):
|
111 |
-
|
112 |
-
latents = self.latents.repeat(x.size(0), 1, 1)
|
113 |
-
|
114 |
-
x = self.proj_in(x)
|
115 |
-
|
116 |
-
for attn, ff in self.layers:
|
117 |
-
latents = attn(x, latents) + latents
|
118 |
-
latents = ff(latents) + latents
|
119 |
-
|
120 |
-
latents = self.proj_out(latents)
|
121 |
-
return self.norm_out(latents)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ip_adapter/utils.py
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
import torch.nn.functional as F
|
2 |
-
|
3 |
-
|
4 |
-
def is_torch2_available():
|
5 |
-
return hasattr(F, "scaled_dot_product_attention")
|
|
|
|
|
|
|
|
|
|
|
|