Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -52,30 +52,6 @@ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
52 |
torch_dtype = torch.bfloat16
|
53 |
|
54 |
|
55 |
-
repo_id = "ford442/SDXL-IP_ADAPTER"
|
56 |
-
subfolder = "image_encoder"
|
57 |
-
subfolder2 = "ip_adapter"
|
58 |
-
|
59 |
-
# Download the entire repository
|
60 |
-
local_repo_path = snapshot_download(repo_id=repo_id, repo_type="model")
|
61 |
-
|
62 |
-
# Construct the paths to the subfolders
|
63 |
-
local_folder = os.path.join(local_repo_path, subfolder)
|
64 |
-
local_folder2 = os.path.join(local_repo_path, subfolder2) # Path to the ip_adapter dir
|
65 |
-
|
66 |
-
print(f"Image encoder downloaded to: {local_folder}")
|
67 |
-
print(f"IP Adapter files downloaded to: {local_folder2}")
|
68 |
-
|
69 |
-
# Construct the path to the ip-adapter_sdxl.bin file
|
70 |
-
#ip_ckpt = os.path.join(local_folder2, "ip-adapter_sdxl.bin") # Correct path
|
71 |
-
ip_ckpt = os.path.join(local_folder2, "ip-adapter_sdxl_vit-h.bin") # Correct path
|
72 |
-
|
73 |
-
print(f"IP Adapter checkpoint path: {ip_ckpt}")
|
74 |
-
ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
|
75 |
-
|
76 |
-
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
|
77 |
-
|
78 |
-
|
79 |
checkpoint = "microsoft/Phi-3.5-mini-instruct"
|
80 |
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
81 |
vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
@@ -111,6 +87,33 @@ tokenizer.tokenizer_legacy=False
|
|
111 |
model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map='balanced')
|
112 |
#model = torch.compile(model)
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
def filter_text(text,phraseC):
|
115 |
"""Filters out the text up to and including 'Rewritten Prompt:'."""
|
116 |
phrase = "Rewritten Prompt:"
|
|
|
52 |
torch_dtype = torch.bfloat16
|
53 |
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
checkpoint = "microsoft/Phi-3.5-mini-instruct"
|
56 |
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
57 |
vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
|
|
87 |
model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map='balanced')
|
88 |
#model = torch.compile(model)
|
89 |
|
90 |
+
|
91 |
+
|
92 |
+
repo_id = "ford442/SDXL-IP_ADAPTER"
|
93 |
+
subfolder = "image_encoder"
|
94 |
+
subfolder2 = "ip_adapter"
|
95 |
+
|
96 |
+
# Download the entire repository
|
97 |
+
local_repo_path = snapshot_download(repo_id=repo_id, repo_type="model")
|
98 |
+
|
99 |
+
# Construct the paths to the subfolders
|
100 |
+
local_folder = os.path.join(local_repo_path, subfolder)
|
101 |
+
local_folder2 = os.path.join(local_repo_path, subfolder2) # Path to the ip_adapter dir
|
102 |
+
|
103 |
+
print(f"Image encoder downloaded to: {local_folder}")
|
104 |
+
print(f"IP Adapter files downloaded to: {local_folder2}")
|
105 |
+
|
106 |
+
# Construct the path to the ip-adapter_sdxl.bin file
|
107 |
+
#ip_ckpt = os.path.join(local_folder2, "ip-adapter_sdxl.bin") # Correct path
|
108 |
+
ip_ckpt = os.path.join(local_folder2, "ip-adapter_sdxl_vit-h.bin") # Correct path
|
109 |
+
|
110 |
+
print(f"IP Adapter checkpoint path: {ip_ckpt}")
|
111 |
+
ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
|
112 |
+
|
113 |
+
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
|
114 |
+
|
115 |
+
|
116 |
+
|
117 |
def filter_text(text,phraseC):
|
118 |
"""Filters out the text up to and including 'Rewritten Prompt:'."""
|
119 |
phrase = "Rewritten Prompt:"
|