Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ import spaces
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import random
|
5 |
-
from lora import LoRAModel
|
6 |
|
7 |
import torch
|
8 |
from diffusers import StableDiffusion3Pipeline
|
@@ -74,16 +73,13 @@ pipe = StableDiffusion3Pipeline.from_pretrained(
|
|
74 |
#tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
|
75 |
#tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
|
76 |
tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=False, use_fast=True, subfolder="tokenizer_3", token=True),
|
77 |
-
torch_dtype=torch.bfloat16,
|
78 |
#use_safetensors=False,
|
79 |
)
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
pipe.apply_lora(lora_model, scaling_factor=0.75)
|
85 |
-
#pipe.to(device=device, dtype=torch.bfloat16)
|
86 |
-
pipe.to(device)
|
87 |
|
88 |
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device('cpu'))
|
89 |
|
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import random
|
|
|
5 |
|
6 |
import torch
|
7 |
from diffusers import StableDiffusion3Pipeline
|
|
|
73 |
#tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
|
74 |
#tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
|
75 |
tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=False, use_fast=True, subfolder="tokenizer_3", token=True),
|
76 |
+
#torch_dtype=torch.bfloat16,
|
77 |
#use_safetensors=False,
|
78 |
)
|
79 |
|
80 |
+
pipe.load_lora_weights("https://huggingface.co/ford442/sdxl-vae-bf16/LoRA/UltraReal.safetensors")
|
81 |
+
pipe.to(device=device, dtype=torch.bfloat16)
|
82 |
+
#pipe.to(device)
|
|
|
|
|
|
|
83 |
|
84 |
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device('cpu'))
|
85 |
|