ford442 commited on
Commit
33c2684
·
verified ·
1 Parent(s): f891d04

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -2
app.py CHANGED
@@ -61,7 +61,7 @@ checkpoint = "microsoft/Phi-3.5-mini-instruct"
61
  vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
62
  #vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
63
 
64
- pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(device).to(torch.bfloat16)
65
  #pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(torch.device("cuda:0"))
66
  #pipe = StableDiffusion3Pipeline.from_pretrained("ford442/RealVis_Medium_1.0b_bf16", torch_dtype=torch.bfloat16)
67
  #pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium", token=hftoken, torch_dtype=torch.float32, device_map='balanced')
@@ -75,7 +75,7 @@ pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-me
75
  #pipe = torch.compile(pipe)
76
  # pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear")
77
 
78
- refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("ford442/stable-diffusion-xl-refiner-1.0-bf16", vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16"), requires_aesthetics_score=True).to(device).to(torch.bfloat16)
79
  #refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float32, requires_aesthetics_score=True, device_map='balanced')
80
  refiner.scheduler=EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config)
81
  #refiner.enable_model_cpu_offload()
@@ -131,6 +131,8 @@ def infer(
131
  latent_file, # Add latents file input
132
  progress=gr.Progress(track_tqdm=True),
133
  ):
 
 
134
  torch.set_float32_matmul_precision("highest")
135
  seed = random.randint(0, MAX_SEED)
136
  generator = torch.Generator(device='cuda').manual_seed(seed)
@@ -254,6 +256,8 @@ def infer(
254
  #torch.save(generated_latents, latent_path)
255
  #upload_to_ftp(latent_path)
256
  #refiner.scheduler.set_timesteps(num_inference_steps,device)
 
 
257
  refine = refiner(
258
  prompt=f"{enhanced_prompt_2}, high quality masterpiece, complex details",
259
  negative_prompt = negative_prompt,
@@ -265,9 +269,12 @@ def infer(
265
  refine_path = f"sd35_refine_{seed}.png"
266
  refine.save(refine_path,optimize=False,compress_level=0)
267
  upload_to_ftp(refine_path)
 
 
268
  with torch.no_grad():
269
  upscale2 = upscaler_2(refine, tiling=True, tile_width=256, tile_height=256)
270
  print('-- got upscaled image --')
 
271
  downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
272
  upscale_path = f"sd35_upscale_{seed}.png"
273
  downscale2.save(upscale_path,optimize=False,compress_level=0)
 
61
  vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
62
  #vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
63
 
64
+ pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(torch.bfloat16)
65
  #pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(torch.device("cuda:0"))
66
  #pipe = StableDiffusion3Pipeline.from_pretrained("ford442/RealVis_Medium_1.0b_bf16", torch_dtype=torch.bfloat16)
67
  #pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium", token=hftoken, torch_dtype=torch.float32, device_map='balanced')
 
75
  #pipe = torch.compile(pipe)
76
  # pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear")
77
 
78
+ refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("ford442/stable-diffusion-xl-refiner-1.0-bf16", vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16"), requires_aesthetics_score=True).to(torch.bfloat16)
79
  #refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float32, requires_aesthetics_score=True, device_map='balanced')
80
  refiner.scheduler=EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config)
81
  #refiner.enable_model_cpu_offload()
 
131
  latent_file, # Add latents file input
132
  progress=gr.Progress(track_tqdm=True),
133
  ):
134
+ upscaler_2.to(torch.device('cpu'))
135
+ pipe.to(torch.device('cuda'))
136
  torch.set_float32_matmul_precision("highest")
137
  seed = random.randint(0, MAX_SEED)
138
  generator = torch.Generator(device='cuda').manual_seed(seed)
 
256
  #torch.save(generated_latents, latent_path)
257
  #upload_to_ftp(latent_path)
258
  #refiner.scheduler.set_timesteps(num_inference_steps,device)
259
+ pipe.to(torch.device('cpu'))
260
+ refiner.to(torch.device('cuda'))
261
  refine = refiner(
262
  prompt=f"{enhanced_prompt_2}, high quality masterpiece, complex details",
263
  negative_prompt = negative_prompt,
 
269
  refine_path = f"sd35_refine_{seed}.png"
270
  refine.save(refine_path,optimize=False,compress_level=0)
271
  upload_to_ftp(refine_path)
272
+ refiner.to(torch.device('cpu'))
273
+ upscaler_2.to(torch.device('cuda'))
274
  with torch.no_grad():
275
  upscale2 = upscaler_2(refine, tiling=True, tile_width=256, tile_height=256)
276
  print('-- got upscaled image --')
277
+ upscaler_2.to(torch.device('cpu'))
278
  downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
279
  upscale_path = f"sd35_upscale_{seed}.png"
280
  downscale2.save(upscale_path,optimize=False,compress_level=0)