Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -75,9 +75,9 @@ pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-me
|
|
75 |
#pipe = torch.compile(pipe)
|
76 |
# pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear")
|
77 |
|
78 |
-
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("ford442/stable-diffusion-xl-refiner-1.0-bf16", vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16"),
|
79 |
#refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float32, requires_aesthetics_score=True, device_map='balanced')
|
80 |
-
refiner.scheduler=EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config
|
81 |
#refiner.enable_model_cpu_offload()
|
82 |
|
83 |
#refiner.scheduler.config.requires_aesthetics_score=False
|
@@ -86,9 +86,9 @@ refiner.scheduler=EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.
|
|
86 |
#refiner.scheduler = EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config, beta_schedule="scaled_linear")
|
87 |
#refiner.scheduler = EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config)
|
88 |
|
89 |
-
tokenizer = AutoTokenizer.from_pretrained(checkpoint, add_prefix_space=False)
|
90 |
tokenizer.tokenizer_legacy=False
|
91 |
-
model = AutoModelForCausalLM.from_pretrained(checkpoint)
|
92 |
#model = torch.compile(model)
|
93 |
|
94 |
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
|
|
|
75 |
#pipe = torch.compile(pipe)
|
76 |
# pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear")
|
77 |
|
78 |
+
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("ford442/stable-diffusion-xl-refiner-1.0-bf16", vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16"), requires_aesthetics_score=True).to(device).to(torch.bfloat16)
|
79 |
#refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float32, requires_aesthetics_score=True, device_map='balanced')
|
80 |
+
refiner.scheduler=EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config)
|
81 |
#refiner.enable_model_cpu_offload()
|
82 |
|
83 |
#refiner.scheduler.config.requires_aesthetics_score=False
|
|
|
86 |
#refiner.scheduler = EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config, beta_schedule="scaled_linear")
|
87 |
#refiner.scheduler = EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config)
|
88 |
|
89 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint, add_prefix_space=False, device_map='balanced')
|
90 |
tokenizer.tokenizer_legacy=False
|
91 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map='balanced')
|
92 |
#model = torch.compile(model)
|
93 |
|
94 |
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
|