ford442 commited on
Commit
cf00c9b
·
verified ·
1 Parent(s): 8681d5c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -3
app.py CHANGED
@@ -5,7 +5,7 @@ import random
5
 
6
  import torch
7
  from diffusers import StableDiffusion3Pipeline, AutoencoderKL
8
- #from transformers import CLIPTextModelWithProjection, T5EncoderModel
9
  from transformers import CLIPTokenizer, T5TokenizerFast
10
 
11
  import re
@@ -61,27 +61,35 @@ def upload_to_ftp(filename):
61
  pyx = cyper.inline(code, fast_indexing=True, directives=dict(boundscheck=False, wraparound=False, language_level=3))
62
 
63
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
64
- #vaeX=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", use_safetensors=False, subfolder='sd3-vae',token=True)
65
 
66
  pipe = StableDiffusion3Pipeline.from_pretrained(
67
  #"stabilityai # stable-diffusion-3.5-large",
68
  "ford442/stable-diffusion-3.5-large-bf16",
69
  # vae=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", use_safetensors=True, subfolder='vae',token=True),
70
  #scheduler = FlowMatchHeunDiscreteScheduler.from_pretrained('ford442/stable-diffusion-3.5-large-bf16', subfolder='scheduler',token=True),
 
71
  # text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
 
72
  # text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
 
73
  # text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
74
  #tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
75
  #tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
76
  tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=False, use_fast=True, subfolder="tokenizer_3", token=True),
77
- #vae=vaeX,
78
  #torch_dtype=torch.bfloat16,
79
  #use_safetensors=False,
80
  )
81
  #pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
82
  pipe.to(device=device, dtype=torch.bfloat16)
83
  #pipe.to(device)
 
84
 
 
 
 
 
85
  upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device('cpu'))
86
 
87
  MAX_SEED = np.iinfo(np.int32).max
@@ -100,6 +108,9 @@ def infer_30(
100
  num_inference_steps,
101
  progress=gr.Progress(track_tqdm=True),
102
  ):
 
 
 
103
  torch.set_float32_matmul_precision("highest")
104
  seed = random.randint(0, MAX_SEED)
105
  generator = torch.Generator(device='cuda').manual_seed(seed)
@@ -147,6 +158,9 @@ def infer_60(
147
  num_inference_steps,
148
  progress=gr.Progress(track_tqdm=True),
149
  ):
 
 
 
150
  torch.set_float32_matmul_precision("highest")
151
  seed = random.randint(0, MAX_SEED)
152
  generator = torch.Generator(device='cuda').manual_seed(seed)
@@ -193,6 +207,9 @@ def infer_90(
193
  num_inference_steps,
194
  progress=gr.Progress(track_tqdm=True),
195
  ):
 
 
 
196
  torch.set_float32_matmul_precision("highest")
197
  seed = random.randint(0, MAX_SEED)
198
  generator = torch.Generator(device='cuda').manual_seed(seed)
 
5
 
6
  import torch
7
  from diffusers import StableDiffusion3Pipeline, AutoencoderKL
8
+ from transformers import CLIPTextModelWithProjection, T5EncoderModel
9
  from transformers import CLIPTokenizer, T5TokenizerFast
10
 
11
  import re
 
61
  pyx = cyper.inline(code, fast_indexing=True, directives=dict(boundscheck=False, wraparound=False, language_level=3))
62
 
63
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
64
+ vaeX=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", use_safetensors=True, subfolder='vae',token=True)
65
 
66
  pipe = StableDiffusion3Pipeline.from_pretrained(
67
  #"stabilityai # stable-diffusion-3.5-large",
68
  "ford442/stable-diffusion-3.5-large-bf16",
69
  # vae=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", use_safetensors=True, subfolder='vae',token=True),
70
  #scheduler = FlowMatchHeunDiscreteScheduler.from_pretrained('ford442/stable-diffusion-3.5-large-bf16', subfolder='scheduler',token=True),
71
+ text_encoder=None, #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
72
  # text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
73
+ text_encoder_2=None, #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
74
  # text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
75
+ text_encoder_3=None, #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
76
  # text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
77
  #tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
78
  #tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
79
  tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=False, use_fast=True, subfolder="tokenizer_3", token=True),
80
+ vae=None,
81
  #torch_dtype=torch.bfloat16,
82
  #use_safetensors=False,
83
  )
84
  #pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
85
  pipe.to(device=device, dtype=torch.bfloat16)
86
  #pipe.to(device)
87
+ pipe.vae=vaeX.to('cpu')
88
 
89
+ text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
90
+ text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
91
+ text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
92
+
93
  upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device('cpu'))
94
 
95
  MAX_SEED = np.iinfo(np.int32).max
 
108
  num_inference_steps,
109
  progress=gr.Progress(track_tqdm=True),
110
  ):
111
+ pipe.text_encoder=text_encoder
112
+ pipe.text_encoder_2=text_encoder_2
113
+ pipe.text_encoder_3=text_encoder_3
114
  torch.set_float32_matmul_precision("highest")
115
  seed = random.randint(0, MAX_SEED)
116
  generator = torch.Generator(device='cuda').manual_seed(seed)
 
158
  num_inference_steps,
159
  progress=gr.Progress(track_tqdm=True),
160
  ):
161
+ pipe.text_encoder=text_encoder
162
+ pipe.text_encoder_2=text_encoder_2
163
+ pipe.text_encoder_3=text_encoder_3
164
  torch.set_float32_matmul_precision("highest")
165
  seed = random.randint(0, MAX_SEED)
166
  generator = torch.Generator(device='cuda').manual_seed(seed)
 
207
  num_inference_steps,
208
  progress=gr.Progress(track_tqdm=True),
209
  ):
210
+ pipe.text_encoder=text_encoder
211
+ pipe.text_encoder_2=text_encoder_2
212
+ pipe.text_encoder_3=text_encoder_3
213
  torch.set_float32_matmul_precision("highest")
214
  seed = random.randint(0, MAX_SEED)
215
  generator = torch.Generator(device='cuda').manual_seed(seed)