ford442 commited on
Commit
f6921b0
·
verified ·
1 Parent(s): e4f7018

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -14
app.py CHANGED
@@ -16,8 +16,8 @@ import time
16
  import os
17
  from image_gen_aux import UpscaleWithModel
18
  from huggingface_hub import hf_hub_download
19
- from models.transformer_sd3 import SD3Transformer2DModel
20
- from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
21
  from PIL import Image
22
 
23
  FTP_HOST = "1ink.us"
@@ -63,12 +63,6 @@ checkpoint = "microsoft/Phi-3.5-mini-instruct"
63
  vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
64
  #vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
65
 
66
- transformer = SD3Transformer2DModel.from_pretrained(
67
- model_path,
68
- subfolder="transformer",
69
- torch_dtype=torch.bfloat16
70
- )
71
-
72
  pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16", transformer=transformer).to(device=torch.device("cuda:0"), dtype=torch.bfloat16)
73
  #pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(torch.device("cuda:0"))
74
  #pipe = StableDiffusion3Pipeline.from_pretrained("ford442/RealVis_Medium_1.0b_bf16", torch_dtype=torch.bfloat16)
@@ -99,12 +93,6 @@ tokenizer.tokenizer_legacy=False
99
  model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map='balanced')
100
  #model = torch.compile(model)
101
 
102
- pipe.init_ipadapter(
103
- ip_adapter_path=ipadapter_path,
104
- image_encoder_path=image_encoder_path,
105
- nb_token=64,
106
- )
107
-
108
  upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
109
 
110
  def filter_text(text,phraseC):
 
16
  import os
17
  from image_gen_aux import UpscaleWithModel
18
  from huggingface_hub import hf_hub_download
19
+ #from models.transformer_sd3 import SD3Transformer2DModel
20
+ #from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
21
  from PIL import Image
22
 
23
  FTP_HOST = "1ink.us"
 
63
  vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
64
  #vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
65
 
 
 
 
 
 
 
66
  pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16", transformer=transformer).to(device=torch.device("cuda:0"), dtype=torch.bfloat16)
67
  #pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(torch.device("cuda:0"))
68
  #pipe = StableDiffusion3Pipeline.from_pretrained("ford442/RealVis_Medium_1.0b_bf16", torch_dtype=torch.bfloat16)
 
93
  model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map='balanced')
94
  #model = torch.compile(model)
95
 
 
 
 
 
 
 
96
  upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
97
 
98
  def filter_text(text,phraseC):