ford442 commited on
Commit
c7abc95
·
verified ·
1 Parent(s): 53a4bae

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -14
app.py CHANGED
@@ -158,23 +158,34 @@ def infer(
158
  if latent_file: # Check if a latent file is provided
159
  sd_image_a = torch.load(latent_file.name) # Load the latent
160
  print("-- using latent file --")
161
- print('-- generating image --')
162
- with torch.no_grad():
163
- sd_image = pipe(
164
- prompt=enhanced_prompt, # This conversion is fine
165
- negative_prompt=negative_prompt,
166
- guidance_scale=guidance_scale,
167
- num_inference_steps=num_inference_steps,
168
- width=width,
169
- height=height,
170
- generator=generator
171
- ).images[0]
172
- print('-- got image --')
 
 
 
 
 
 
 
 
 
 
 
 
173
  image_path = f"sd35m_{seed}.png"
174
  sd_image.save(image_path,optimize=False,compress_level=0)
175
  upload_to_ftp(image_path)
176
-
177
- # Convert the generated image to a tensor
178
  generated_image_tensor = torch.tensor([np.array(sd_image).transpose(2, 0, 1)]).to('cuda') / 255.0
179
  # Encode the generated image into latents
180
  with torch.no_grad():
 
158
  if latent_file: # Check if a latent file is provided
159
  sd_image_a = torch.load(latent_file.name) # Load the latent
160
  print("-- using latent file --")
161
+ print('-- generating image --')
162
+ with torch.no_grad():
163
+ sd_image = pipe(
164
+ prompt=enhanced_prompt, # This conversion is fine
165
+ negative_prompt=negative_prompt,
166
+ guidance_scale=guidance_scale,
167
+ num_inference_steps=num_inference_steps,
168
+ width=width,
169
+ height=height,
170
+ latent=sd_image_a,
171
+ generator=generator
172
+ ).images[0]
173
+ else:
174
+ with torch.no_grad():
175
+ sd_image = pipe(
176
+ prompt=enhanced_prompt, # This conversion is fine
177
+ negative_prompt=negative_prompt,
178
+ guidance_scale=guidance_scale,
179
+ num_inference_steps=num_inference_steps,
180
+ width=width,
181
+ height=height,
182
+ generator=generator
183
+ ).images[0]
184
+ print('-- got image --')
185
  image_path = f"sd35m_{seed}.png"
186
  sd_image.save(image_path,optimize=False,compress_level=0)
187
  upload_to_ftp(image_path)
188
+ # Convert the generated image to a tensor
 
189
  generated_image_tensor = torch.tensor([np.array(sd_image).transpose(2, 0, 1)]).to('cuda') / 255.0
190
  # Encode the generated image into latents
191
  with torch.no_grad():