Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -158,23 +158,34 @@ def infer(
|
|
158 |
if latent_file: # Check if a latent file is provided
|
159 |
sd_image_a = torch.load(latent_file.name) # Load the latent
|
160 |
print("-- using latent file --")
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
image_path = f"sd35m_{seed}.png"
|
174 |
sd_image.save(image_path,optimize=False,compress_level=0)
|
175 |
upload_to_ftp(image_path)
|
176 |
-
|
177 |
-
# Convert the generated image to a tensor
|
178 |
generated_image_tensor = torch.tensor([np.array(sd_image).transpose(2, 0, 1)]).to('cuda') / 255.0
|
179 |
# Encode the generated image into latents
|
180 |
with torch.no_grad():
|
|
|
158 |
if latent_file: # Check if a latent file is provided
|
159 |
sd_image_a = torch.load(latent_file.name) # Load the latent
|
160 |
print("-- using latent file --")
|
161 |
+
print('-- generating image --')
|
162 |
+
with torch.no_grad():
|
163 |
+
sd_image = pipe(
|
164 |
+
prompt=enhanced_prompt, # This conversion is fine
|
165 |
+
negative_prompt=negative_prompt,
|
166 |
+
guidance_scale=guidance_scale,
|
167 |
+
num_inference_steps=num_inference_steps,
|
168 |
+
width=width,
|
169 |
+
height=height,
|
170 |
+
latent=sd_image_a,
|
171 |
+
generator=generator
|
172 |
+
).images[0]
|
173 |
+
else:
|
174 |
+
with torch.no_grad():
|
175 |
+
sd_image = pipe(
|
176 |
+
prompt=enhanced_prompt, # This conversion is fine
|
177 |
+
negative_prompt=negative_prompt,
|
178 |
+
guidance_scale=guidance_scale,
|
179 |
+
num_inference_steps=num_inference_steps,
|
180 |
+
width=width,
|
181 |
+
height=height,
|
182 |
+
generator=generator
|
183 |
+
).images[0]
|
184 |
+
print('-- got image --')
|
185 |
image_path = f"sd35m_{seed}.png"
|
186 |
sd_image.save(image_path,optimize=False,compress_level=0)
|
187 |
upload_to_ftp(image_path)
|
188 |
+
# Convert the generated image to a tensor
|
|
|
189 |
generated_image_tensor = torch.tensor([np.array(sd_image).transpose(2, 0, 1)]).to('cuda') / 255.0
|
190 |
# Encode the generated image into latents
|
191 |
with torch.no_grad():
|