Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import numpy as np
|
|
4 |
#import tensorrt as trt
|
5 |
import random
|
6 |
import torch
|
7 |
-
from diffusers import StableDiffusion3Pipeline, AutoencoderKL
|
8 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
9 |
#from threading import Thread
|
10 |
#from transformers import pipeline
|
@@ -60,9 +60,16 @@ checkpoint = "microsoft/Phi-3.5-mini-instruct"
|
|
60 |
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
61 |
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
62 |
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
63 |
-
vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False) #, device_map='cpu') #.to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-large-bf16").to(device=device, dtype=torch.bfloat16)
|
66 |
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(torch.device("cuda:0"))
|
67 |
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/RealVis_Medium_1.0b_bf16", torch_dtype=torch.bfloat16)
|
68 |
#pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium", token=hftoken, torch_dtype=torch.float32, device_map='balanced')
|
|
|
4 |
#import tensorrt as trt
|
5 |
import random
|
6 |
import torch
|
7 |
+
from diffusers import StableDiffusion3Pipeline, AutoencoderKL
|
8 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
9 |
#from threading import Thread
|
10 |
#from transformers import pipeline
|
|
|
60 |
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
61 |
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
62 |
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
63 |
+
#vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False) #, device_map='cpu') #.to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
|
64 |
+
|
65 |
+
pipe = StableDiffusion3Pipeline.from_pretrained(
|
66 |
+
"ford442/stable-diffusion-3.5-large-bf16",
|
67 |
+
token=True,
|
68 |
+
use_safetensors=True
|
69 |
+
)
|
70 |
+
|
71 |
+
pipe.to(device=device, dtype=torch.bfloat16)
|
72 |
|
|
|
73 |
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(torch.device("cuda:0"))
|
74 |
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/RealVis_Medium_1.0b_bf16", torch_dtype=torch.bfloat16)
|
75 |
#pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium", token=hftoken, torch_dtype=torch.float32, device_map='balanced')
|