Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -25,21 +25,17 @@ FTP_USER = "ford442"
|
|
25 |
FTP_PASS = "GoogleBez12!"
|
26 |
FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server
|
27 |
|
28 |
-
|
29 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
30 |
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
31 |
-
|
32 |
torch.backends.cudnn.deterministic = False
|
33 |
-
|
34 |
#torch.backends.cuda.preferred_blas_library="cublas"
|
35 |
#torch.backends.cuda.preferred_linalg_library="cusolver"
|
36 |
|
37 |
hftoken = os.getenv("HF_AUTH_TOKEN")
|
38 |
|
39 |
-
#image_encoder_path = "google/siglip-so400m-patch14-384"
|
40 |
-
#ipadapter_path = hf_hub_download(repo_id="InstantX/SD3.5-Large-IP-Adapter", filename="ip-adapter.bin")
|
41 |
-
#model_path = 'ford442/stable-diffusion-3.5-medium-bf16'
|
42 |
-
|
43 |
def upload_to_ftp(filename):
|
44 |
try:
|
45 |
transport = paramiko.Transport((FTP_HOST, 22))
|
@@ -66,7 +62,7 @@ pipe = StableDiffusion3Pipeline.from_pretrained(
|
|
66 |
# text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
|
67 |
#tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
|
68 |
#tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
|
69 |
-
tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", use_fast=True, subfolder="tokenizer_3", token=True),
|
70 |
torch_dtype=torch.bfloat16,
|
71 |
#use_safetensors=False,
|
72 |
)
|
@@ -77,90 +73,77 @@ pipe = StableDiffusion3Pipeline.from_pretrained(
|
|
77 |
pipe.to(device)
|
78 |
#pipe.to(device=device, dtype=torch.bfloat16)
|
79 |
|
80 |
-
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device(
|
81 |
-
|
82 |
-
def filter_text(text,phraseC):
|
83 |
-
"""Filters out the text up to and including 'Rewritten Prompt:'."""
|
84 |
-
phrase = "Rewritten Prompt:"
|
85 |
-
phraseB = "rewritten text:"
|
86 |
-
pattern = f"(.*?){re.escape(phrase)}(.*)"
|
87 |
-
patternB = f"(.*?){re.escape(phraseB)}(.*)"
|
88 |
-
# matchB = re.search(patternB, text)
|
89 |
-
matchB = re.search(patternB, text, flags=re.DOTALL)
|
90 |
-
if matchB:
|
91 |
-
filtered_text = matchB.group(2)
|
92 |
-
match = re.search(pattern, filtered_text, flags=re.DOTALL)
|
93 |
-
if match:
|
94 |
-
filtered_text = match.group(2)
|
95 |
-
filtered_text = re.sub(phraseC, "", filtered_text, flags=re.DOTALL) # Replaces the matched pattern with an empty string
|
96 |
-
return filtered_text
|
97 |
-
else:
|
98 |
-
return filtered_text
|
99 |
-
else:
|
100 |
-
# Handle the case where no match is found
|
101 |
-
return text
|
102 |
|
103 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
104 |
MAX_IMAGE_SIZE = 4096
|
105 |
|
106 |
-
@spaces.GPU(duration=
|
107 |
-
def
|
108 |
prompt,
|
109 |
negative_prompt_1,
|
110 |
negative_prompt_2,
|
111 |
negative_prompt_3,
|
112 |
-
seed,
|
113 |
-
randomize_seed,
|
114 |
width,
|
115 |
height,
|
116 |
guidance_scale,
|
117 |
num_inference_steps,
|
118 |
-
expanded,
|
119 |
-
latent_file, # Add latents file input
|
120 |
progress=gr.Progress(track_tqdm=True),
|
121 |
):
|
122 |
-
upscaler_2.to(torch.device('cpu'))
|
123 |
torch.set_float32_matmul_precision("highest")
|
124 |
seed = random.randint(0, MAX_SEED)
|
125 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
# initial_latents = pipe.prepare_latents(
|
132 |
-
# batch_size=1,
|
133 |
-
# num_channels_latents=pipe.transformer.in_channels,
|
134 |
-
# height=pipe.transformer.config.sample_size[0],
|
135 |
-
# width=pipe.transformer.config.sample_size[1],
|
136 |
-
# dtype=pipe.transformer.dtype,
|
137 |
-
# device=pipe.device,
|
138 |
-
# generator=generator,
|
139 |
-
# )
|
140 |
-
sd_image_a = Image.open(latent_file.name)
|
141 |
-
print("-- using image file --")
|
142 |
-
print('-- generating image --')
|
143 |
-
#with torch.no_grad():
|
144 |
-
sd_image = pipe(
|
145 |
-
prompt=enhanced_prompt, # This conversion is fine
|
146 |
negative_prompt=negative_prompt_1,
|
|
|
|
|
147 |
guidance_scale=guidance_scale,
|
148 |
num_inference_steps=num_inference_steps,
|
149 |
width=width,
|
150 |
height=height,
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
negative_prompt=negative_prompt_1,
|
165 |
negative_prompt_2=negative_prompt_2,
|
166 |
negative_prompt_3=negative_prompt_3,
|
@@ -168,93 +151,123 @@ def infer(
|
|
168 |
num_inference_steps=num_inference_steps,
|
169 |
width=width,
|
170 |
height=height,
|
171 |
-
# latents=None,
|
172 |
-
# output_type='latent',
|
173 |
generator=generator,
|
174 |
max_sequence_length=512
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
# image_pil = Image.fromarray(sd35_image[0])
|
181 |
-
# sd35_path = f"sd35_{seed}.png"
|
182 |
-
# image_pil.save(sd35_path,optimize=False,compress_level=0)
|
183 |
-
# upload_to_ftp(sd35_path)
|
184 |
-
sd35_path = f"sd35l_{seed}.png"
|
185 |
-
sd_image.save(sd35_path,optimize=False,compress_level=0)
|
186 |
-
upload_to_ftp(sd35_path)
|
187 |
-
# Convert the generated image to a tensor
|
188 |
-
#generated_image_tensor = torch.tensor([np.array(sd_image).transpose(2, 0, 1)]).to('cuda') / 255.0
|
189 |
-
# Encode the generated image into latents
|
190 |
-
#with torch.no_grad():
|
191 |
-
# generated_latents = pipe.vae.encode(generated_image_tensor.to(torch.bfloat16)).latent_dist.sample().mul_(0.18215)
|
192 |
-
#latent_path = f"sd35m_{seed}.pt"
|
193 |
-
# Save the latents to a .pt file
|
194 |
-
#torch.save(generated_latents, latent_path)
|
195 |
-
#upload_to_ftp(latent_path)
|
196 |
# pipe.unet.to('cpu')
|
197 |
upscaler_2.to(torch.device('cuda'))
|
198 |
with torch.no_grad():
|
199 |
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
|
200 |
print('-- got upscaled image --')
|
201 |
-
#upscaler_2.to(torch.device('cpu'))
|
202 |
downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
|
203 |
upscale_path = f"sd35l_upscale_{seed}.png"
|
204 |
downscale2.save(upscale_path,optimize=False,compress_level=0)
|
205 |
upload_to_ftp(upscale_path)
|
206 |
return sd_image, seed, enhanced_prompt
|
207 |
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
224 |
-
|
|
|
225 |
prompt,
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
width,
|
230 |
height,
|
231 |
guidance_scale,
|
232 |
num_inference_steps,
|
233 |
-
|
234 |
):
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
255 |
with gr.Column(elem_id="col-container"):
|
256 |
-
gr.Markdown(" # Text-to-
|
257 |
-
expanded_prompt_output = gr.Textbox(label="
|
258 |
with gr.Row():
|
259 |
prompt = gr.Text(
|
260 |
label="Prompt",
|
@@ -263,19 +276,12 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
263 |
placeholder="Enter your prompt",
|
264 |
container=False,
|
265 |
)
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
interactive=True,
|
271 |
-
choices=options,
|
272 |
-
value=True,
|
273 |
-
label="Use expanded prompt: ",
|
274 |
-
)
|
275 |
-
run_button = gr.Button("Run", scale=0, variant="primary")
|
276 |
result = gr.Image(label="Result", show_label=False)
|
277 |
with gr.Accordion("Advanced Settings", open=True):
|
278 |
-
latent_file = gr.File(label="Image File (optional)") # Add latents file input
|
279 |
negative_prompt_1 = gr.Text(
|
280 |
label="Negative prompt 1",
|
281 |
max_lines=1,
|
@@ -300,60 +306,92 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
300 |
num_iterations = gr.Number(
|
301 |
value=1000,
|
302 |
label="Number of Iterations")
|
303 |
-
seed = gr.Slider(
|
304 |
-
label="Seed",
|
305 |
-
minimum=0,
|
306 |
-
maximum=MAX_SEED,
|
307 |
-
step=1,
|
308 |
-
value=0,
|
309 |
-
)
|
310 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
311 |
with gr.Row():
|
312 |
width = gr.Slider(
|
313 |
label="Width",
|
314 |
minimum=256,
|
315 |
maximum=MAX_IMAGE_SIZE,
|
316 |
step=32,
|
317 |
-
value=768,
|
318 |
)
|
319 |
height = gr.Slider(
|
320 |
label="Height",
|
321 |
minimum=256,
|
322 |
maximum=MAX_IMAGE_SIZE,
|
323 |
step=32,
|
324 |
-
value=768,
|
325 |
)
|
326 |
guidance_scale = gr.Slider(
|
327 |
label="Guidance scale",
|
328 |
minimum=0.0,
|
329 |
maximum=30.0,
|
330 |
step=0.1,
|
331 |
-
value=4.2,
|
332 |
)
|
333 |
num_inference_steps = gr.Slider(
|
334 |
label="Number of inference steps",
|
335 |
minimum=1,
|
336 |
maximum=500,
|
337 |
step=1,
|
338 |
-
value=
|
339 |
)
|
340 |
-
gr.Examples(examples=examples, inputs=[prompt])
|
341 |
gr.on(
|
342 |
-
triggers=[
|
343 |
-
fn=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
inputs=[
|
345 |
prompt,
|
346 |
negative_prompt_1,
|
347 |
negative_prompt_2,
|
348 |
negative_prompt_3,
|
349 |
-
seed,
|
350 |
-
randomize_seed,
|
351 |
width,
|
352 |
height,
|
353 |
guidance_scale,
|
354 |
num_inference_steps,
|
355 |
-
expanded,
|
356 |
-
latent_file, # Add latent_file to the inputs
|
357 |
],
|
358 |
outputs=[result, seed, expanded_prompt_output],
|
359 |
)
|
|
|
25 |
FTP_PASS = "GoogleBez12!"
|
26 |
FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server
|
27 |
|
28 |
+
torch.backends.cuda.matmul.allow_tf32 = False
|
29 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
30 |
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
31 |
+
torch.backends.cudnn.allow_tf32 = False
|
32 |
torch.backends.cudnn.deterministic = False
|
33 |
+
torch.backends.cudnn.benchmark = False
|
34 |
#torch.backends.cuda.preferred_blas_library="cublas"
|
35 |
#torch.backends.cuda.preferred_linalg_library="cusolver"
|
36 |
|
37 |
hftoken = os.getenv("HF_AUTH_TOKEN")
|
38 |
|
|
|
|
|
|
|
|
|
39 |
def upload_to_ftp(filename):
|
40 |
try:
|
41 |
transport = paramiko.Transport((FTP_HOST, 22))
|
|
|
62 |
# text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
|
63 |
#tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
|
64 |
#tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
|
65 |
+
#tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", use_fast=True, subfolder="tokenizer_3", token=True),
|
66 |
torch_dtype=torch.bfloat16,
|
67 |
#use_safetensors=False,
|
68 |
)
|
|
|
73 |
pipe.to(device)
|
74 |
#pipe.to(device=device, dtype=torch.bfloat16)
|
75 |
|
76 |
+
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device('cpu'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
MAX_SEED = np.iinfo(np.int32).max
|
79 |
+
|
80 |
MAX_IMAGE_SIZE = 4096
|
81 |
|
82 |
+
@spaces.GPU(duration=30)
|
83 |
+
def infer_30(
|
84 |
prompt,
|
85 |
negative_prompt_1,
|
86 |
negative_prompt_2,
|
87 |
negative_prompt_3,
|
|
|
|
|
88 |
width,
|
89 |
height,
|
90 |
guidance_scale,
|
91 |
num_inference_steps,
|
|
|
|
|
92 |
progress=gr.Progress(track_tqdm=True),
|
93 |
):
|
|
|
94 |
torch.set_float32_matmul_precision("highest")
|
95 |
seed = random.randint(0, MAX_SEED)
|
96 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
97 |
+
print('-- generating image --')
|
98 |
+
sd_image = pipe(
|
99 |
+
prompt=prompt,
|
100 |
+
prompt_2=prompt,
|
101 |
+
prompt_3=prompt,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
negative_prompt=negative_prompt_1,
|
103 |
+
negative_prompt_2=negative_prompt_2,
|
104 |
+
negative_prompt_3=negative_prompt_3,
|
105 |
guidance_scale=guidance_scale,
|
106 |
num_inference_steps=num_inference_steps,
|
107 |
width=width,
|
108 |
height=height,
|
109 |
+
generator=generator,
|
110 |
+
max_sequence_length=512
|
111 |
+
).images[0]
|
112 |
+
print('-- got image --')
|
113 |
+
sd35_path = f"sd35l_{seed}.png"
|
114 |
+
sd_image.save(sd35_path,optimize=False,compress_level=0)
|
115 |
+
upload_to_ftp(sd35_path)
|
116 |
+
# pipe.unet.to('cpu')
|
117 |
+
upscaler_2.to(torch.device('cuda'))
|
118 |
+
with torch.no_grad():
|
119 |
+
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
|
120 |
+
print('-- got upscaled image --')
|
121 |
+
downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
|
122 |
+
upscale_path = f"sd35l_upscale_{seed}.png"
|
123 |
+
downscale2.save(upscale_path,optimize=False,compress_level=0)
|
124 |
+
upload_to_ftp(upscale_path)
|
125 |
+
return sd_image, seed, enhanced_prompt
|
126 |
+
|
127 |
+
@spaces.GPU(duration=60)
|
128 |
+
def infer_60(
|
129 |
+
prompt,
|
130 |
+
negative_prompt_1,
|
131 |
+
negative_prompt_2,
|
132 |
+
negative_prompt_3,
|
133 |
+
width,
|
134 |
+
height,
|
135 |
+
guidance_scale,
|
136 |
+
num_inference_steps,
|
137 |
+
progress=gr.Progress(track_tqdm=True),
|
138 |
+
):
|
139 |
+
torch.set_float32_matmul_precision("highest")
|
140 |
+
seed = random.randint(0, MAX_SEED)
|
141 |
+
generator = torch.Generator(device='cuda').manual_seed(seed)
|
142 |
+
print('-- generating image --')
|
143 |
+
sd_image = pipe(
|
144 |
+
prompt=prompt,
|
145 |
+
prompt_2=prompt,
|
146 |
+
prompt_3=prompt,
|
147 |
negative_prompt=negative_prompt_1,
|
148 |
negative_prompt_2=negative_prompt_2,
|
149 |
negative_prompt_3=negative_prompt_3,
|
|
|
151 |
num_inference_steps=num_inference_steps,
|
152 |
width=width,
|
153 |
height=height,
|
|
|
|
|
154 |
generator=generator,
|
155 |
max_sequence_length=512
|
156 |
+
).images[0]
|
157 |
+
print('-- got image --')
|
158 |
+
sd35_path = f"sd35l_{seed}.png"
|
159 |
+
sd_image.save(sd35_path,optimize=False,compress_level=0)
|
160 |
+
upload_to_ftp(sd35_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
# pipe.unet.to('cpu')
|
162 |
upscaler_2.to(torch.device('cuda'))
|
163 |
with torch.no_grad():
|
164 |
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
|
165 |
print('-- got upscaled image --')
|
|
|
166 |
downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
|
167 |
upscale_path = f"sd35l_upscale_{seed}.png"
|
168 |
downscale2.save(upscale_path,optimize=False,compress_level=0)
|
169 |
upload_to_ftp(upscale_path)
|
170 |
return sd_image, seed, enhanced_prompt
|
171 |
|
172 |
+
@spaces.GPU(duration=90)
|
173 |
+
def infer_90(
|
174 |
+
prompt,
|
175 |
+
negative_prompt_1,
|
176 |
+
negative_prompt_2,
|
177 |
+
negative_prompt_3,
|
178 |
+
width,
|
179 |
+
height,
|
180 |
+
guidance_scale,
|
181 |
+
num_inference_steps,
|
182 |
+
progress=gr.Progress(track_tqdm=True),
|
183 |
+
):
|
184 |
+
torch.set_float32_matmul_precision("highest")
|
185 |
+
seed = random.randint(0, MAX_SEED)
|
186 |
+
generator = torch.Generator(device='cuda').manual_seed(seed)
|
187 |
+
print('-- generating image --')
|
188 |
+
sd_image = pipe(
|
189 |
+
prompt=prompt,
|
190 |
+
prompt_2=prompt,
|
191 |
+
prompt_3=prompt,
|
192 |
+
negative_prompt=negative_prompt_1,
|
193 |
+
negative_prompt_2=negative_prompt_2,
|
194 |
+
negative_prompt_3=negative_prompt_3,
|
195 |
+
guidance_scale=guidance_scale,
|
196 |
+
num_inference_steps=num_inference_steps,
|
197 |
+
width=width,
|
198 |
+
height=height,
|
199 |
+
generator=generator,
|
200 |
+
max_sequence_length=512
|
201 |
+
).images[0]
|
202 |
+
print('-- got image --')
|
203 |
+
sd35_path = f"sd35l_{seed}.png"
|
204 |
+
sd_image.save(sd35_path,optimize=False,compress_level=0)
|
205 |
+
upload_to_ftp(sd35_path)
|
206 |
+
# pipe.unet.to('cpu')
|
207 |
+
upscaler_2.to(torch.device('cuda'))
|
208 |
+
with torch.no_grad():
|
209 |
+
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
|
210 |
+
print('-- got upscaled image --')
|
211 |
+
downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
|
212 |
+
upscale_path = f"sd35l_upscale_{seed}.png"
|
213 |
+
downscale2.save(upscale_path,optimize=False,compress_level=0)
|
214 |
+
upload_to_ftp(upscale_path)
|
215 |
+
return sd_image, seed, enhanced_prompt
|
216 |
|
217 |
+
@spaces.GPU(duration=100)
|
218 |
+
def infer_100(
|
219 |
prompt,
|
220 |
+
negative_prompt_1,
|
221 |
+
negative_prompt_2,
|
222 |
+
negative_prompt_3,
|
223 |
width,
|
224 |
height,
|
225 |
guidance_scale,
|
226 |
num_inference_steps,
|
227 |
+
progress=gr.Progress(track_tqdm=True),
|
228 |
):
|
229 |
+
torch.set_float32_matmul_precision("highest")
|
230 |
+
seed = random.randint(0, MAX_SEED)
|
231 |
+
generator = torch.Generator(device='cuda').manual_seed(seed)
|
232 |
+
print('-- generating image --')
|
233 |
+
sd_image = pipe(
|
234 |
+
prompt=prompt,
|
235 |
+
prompt_2=prompt,
|
236 |
+
prompt_3=prompt,
|
237 |
+
negative_prompt=negative_prompt_1,
|
238 |
+
negative_prompt_2=negative_prompt_2,
|
239 |
+
negative_prompt_3=negative_prompt_3,
|
240 |
+
guidance_scale=guidance_scale,
|
241 |
+
num_inference_steps=num_inference_steps,
|
242 |
+
width=width,
|
243 |
+
height=height,
|
244 |
+
generator=generator,
|
245 |
+
max_sequence_length=512
|
246 |
+
).images[0]
|
247 |
+
print('-- got image --')
|
248 |
+
sd35_path = f"sd35l_{seed}.png"
|
249 |
+
sd_image.save(sd35_path,optimize=False,compress_level=0)
|
250 |
+
upload_to_ftp(sd35_path)
|
251 |
+
# pipe.unet.to('cpu')
|
252 |
+
upscaler_2.to(torch.device('cuda'))
|
253 |
+
with torch.no_grad():
|
254 |
+
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
|
255 |
+
print('-- got upscaled image --')
|
256 |
+
downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
|
257 |
+
upscale_path = f"sd35l_upscale_{seed}.png"
|
258 |
+
downscale2.save(upscale_path,optimize=False,compress_level=0)
|
259 |
+
upload_to_ftp(upscale_path)
|
260 |
+
return sd_image, seed, enhanced_prompt
|
261 |
+
|
262 |
+
css = """
|
263 |
+
#col-container {margin: 0 auto;max-width: 640px;}
|
264 |
+
body{background-color: blue;}
|
265 |
+
"""
|
266 |
|
267 |
with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
268 |
with gr.Column(elem_id="col-container"):
|
269 |
+
gr.Markdown(" # Text-to-Image StableDiffusion 3.5 Large")
|
270 |
+
expanded_prompt_output = gr.Textbox(label="Prompt", lines=1) # Add this line
|
271 |
with gr.Row():
|
272 |
prompt = gr.Text(
|
273 |
label="Prompt",
|
|
|
276 |
placeholder="Enter your prompt",
|
277 |
container=False,
|
278 |
)
|
279 |
+
run_button_30 = gr.Button("Run 30", scale=0, variant="primary")
|
280 |
+
run_button_60 = gr.Button("Run 60", scale=0, variant="primary")
|
281 |
+
run_button_90 = gr.Button("Run 90", scale=0, variant="primary")
|
282 |
+
run_button_100 = gr.Button("Run 100", scale=0, variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
result = gr.Image(label="Result", show_label=False)
|
284 |
with gr.Accordion("Advanced Settings", open=True):
|
|
|
285 |
negative_prompt_1 = gr.Text(
|
286 |
label="Negative prompt 1",
|
287 |
max_lines=1,
|
|
|
306 |
num_iterations = gr.Number(
|
307 |
value=1000,
|
308 |
label="Number of Iterations")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
with gr.Row():
|
310 |
width = gr.Slider(
|
311 |
label="Width",
|
312 |
minimum=256,
|
313 |
maximum=MAX_IMAGE_SIZE,
|
314 |
step=32,
|
315 |
+
value=768,
|
316 |
)
|
317 |
height = gr.Slider(
|
318 |
label="Height",
|
319 |
minimum=256,
|
320 |
maximum=MAX_IMAGE_SIZE,
|
321 |
step=32,
|
322 |
+
value=768,
|
323 |
)
|
324 |
guidance_scale = gr.Slider(
|
325 |
label="Guidance scale",
|
326 |
minimum=0.0,
|
327 |
maximum=30.0,
|
328 |
step=0.1,
|
329 |
+
value=4.2,
|
330 |
)
|
331 |
num_inference_steps = gr.Slider(
|
332 |
label="Number of inference steps",
|
333 |
minimum=1,
|
334 |
maximum=500,
|
335 |
step=1,
|
336 |
+
value=50,
|
337 |
)
|
|
|
338 |
gr.on(
|
339 |
+
triggers=[run_button_30.click, prompt.submit],
|
340 |
+
fn=infer_30,
|
341 |
+
inputs=[
|
342 |
+
prompt,
|
343 |
+
negative_prompt_1,
|
344 |
+
negative_prompt_2,
|
345 |
+
negative_prompt_3,
|
346 |
+
width,
|
347 |
+
height,
|
348 |
+
guidance_scale,
|
349 |
+
num_inference_steps,
|
350 |
+
],
|
351 |
+
outputs=[result, seed, expanded_prompt_output],
|
352 |
+
)
|
353 |
+
gr.on(
|
354 |
+
triggers=[run_button_60.click, prompt.submit],
|
355 |
+
fn=infer_60,
|
356 |
+
inputs=[
|
357 |
+
prompt,
|
358 |
+
negative_prompt_1,
|
359 |
+
negative_prompt_2,
|
360 |
+
negative_prompt_3,
|
361 |
+
width,
|
362 |
+
height,
|
363 |
+
guidance_scale,
|
364 |
+
num_inference_steps,
|
365 |
+
],
|
366 |
+
outputs=[result, seed, expanded_prompt_output],
|
367 |
+
)
|
368 |
+
gr.on(
|
369 |
+
triggers=[run_button_90.click, prompt.submit],
|
370 |
+
fn=infer_90,
|
371 |
+
inputs=[
|
372 |
+
prompt,
|
373 |
+
negative_prompt_1,
|
374 |
+
negative_prompt_2,
|
375 |
+
negative_prompt_3,
|
376 |
+
width,
|
377 |
+
height,
|
378 |
+
guidance_scale,
|
379 |
+
num_inference_steps,
|
380 |
+
],
|
381 |
+
outputs=[result, seed, expanded_prompt_output],
|
382 |
+
)
|
383 |
+
gr.on(
|
384 |
+
triggers=[run_button_100.click, prompt.submit],
|
385 |
+
fn=infer_100,
|
386 |
inputs=[
|
387 |
prompt,
|
388 |
negative_prompt_1,
|
389 |
negative_prompt_2,
|
390 |
negative_prompt_3,
|
|
|
|
|
391 |
width,
|
392 |
height,
|
393 |
guidance_scale,
|
394 |
num_inference_steps,
|
|
|
|
|
395 |
],
|
396 |
outputs=[result, seed, expanded_prompt_output],
|
397 |
)
|