Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -53,16 +53,15 @@ def upload_to_ftp(filename):
|
|
53 |
except Exception as e:
|
54 |
print(f"FTP upload error: {e}")
|
55 |
|
56 |
-
device = torch.device("cuda:0")
|
57 |
torch_dtype = torch.bfloat16
|
58 |
|
59 |
checkpoint = "microsoft/Phi-3.5-mini-instruct"
|
60 |
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
|
|
61 |
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
62 |
-
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
63 |
-
vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",safety_checker=None)
|
64 |
|
65 |
-
pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(device=torch.device("cuda:0")
|
66 |
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(torch.device("cuda:0"))
|
67 |
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/RealVis_Medium_1.0b_bf16", torch_dtype=torch.bfloat16)
|
68 |
#pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium", token=hftoken, torch_dtype=torch.float32, device_map='balanced')
|
@@ -76,12 +75,9 @@ pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-me
|
|
76 |
#pipe = torch.compile(pipe)
|
77 |
# pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear")
|
78 |
|
79 |
-
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("ford442/stable-diffusion-xl-refiner-1.0-bf16", requires_aesthetics_score=True)
|
80 |
-
refiner.vae=vae
|
81 |
-
refiner.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", algorithm_type="sde-dpmsolver++")
|
82 |
-
refiner.to(device=torch.device("cuda:0"))
|
83 |
-
refiner.to(torch.bfloat16)
|
84 |
#refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float32, requires_aesthetics_score=True, device_map='balanced')
|
|
|
85 |
#refiner.enable_model_cpu_offload()
|
86 |
|
87 |
#refiner.scheduler.config.requires_aesthetics_score=False
|
@@ -121,7 +117,7 @@ def filter_text(text,phraseC):
|
|
121 |
MAX_SEED = np.iinfo(np.int32).max
|
122 |
MAX_IMAGE_SIZE = 4096
|
123 |
|
124 |
-
@spaces.GPU(duration=
|
125 |
def infer(
|
126 |
prompt,
|
127 |
negative_prompt,
|
|
|
53 |
except Exception as e:
|
54 |
print(f"FTP upload error: {e}")
|
55 |
|
56 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
57 |
torch_dtype = torch.bfloat16
|
58 |
|
59 |
checkpoint = "microsoft/Phi-3.5-mini-instruct"
|
60 |
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
61 |
+
vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
62 |
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
|
|
|
|
63 |
|
64 |
+
pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(device=torch.device("cuda:0"), dtype=torch.bfloat16)
|
65 |
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(torch.device("cuda:0"))
|
66 |
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/RealVis_Medium_1.0b_bf16", torch_dtype=torch.bfloat16)
|
67 |
#pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium", token=hftoken, torch_dtype=torch.float32, device_map='balanced')
|
|
|
75 |
#pipe = torch.compile(pipe)
|
76 |
# pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear")
|
77 |
|
78 |
+
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("ford442/stable-diffusion-xl-refiner-1.0-bf16", vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16"), use_safetensors=True, requires_aesthetics_score=True).to(device=torch.device("cuda:0").to(torch.bfloat16)
|
|
|
|
|
|
|
|
|
79 |
#refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float32, requires_aesthetics_score=True, device_map='balanced')
|
80 |
+
refiner.scheduler=EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config, beta_schedule="scaled_linear")
|
81 |
#refiner.enable_model_cpu_offload()
|
82 |
|
83 |
#refiner.scheduler.config.requires_aesthetics_score=False
|
|
|
117 |
MAX_SEED = np.iinfo(np.int32).max
|
118 |
MAX_IMAGE_SIZE = 4096
|
119 |
|
120 |
+
@spaces.GPU(duration=80)
|
121 |
def infer(
|
122 |
prompt,
|
123 |
negative_prompt,
|