Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -53,16 +53,15 @@ def upload_to_ftp(filename):
|
|
| 53 |
except Exception as e:
|
| 54 |
print(f"FTP upload error: {e}")
|
| 55 |
|
| 56 |
-
device = torch.device("cuda:0")
|
| 57 |
torch_dtype = torch.bfloat16
|
| 58 |
|
| 59 |
checkpoint = "microsoft/Phi-3.5-mini-instruct"
|
| 60 |
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
|
|
|
| 61 |
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
| 62 |
-
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
| 63 |
-
vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",safety_checker=None)
|
| 64 |
|
| 65 |
-
pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(device=torch.device("cuda:0")
|
| 66 |
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(torch.device("cuda:0"))
|
| 67 |
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/RealVis_Medium_1.0b_bf16", torch_dtype=torch.bfloat16)
|
| 68 |
#pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium", token=hftoken, torch_dtype=torch.float32, device_map='balanced')
|
|
@@ -76,12 +75,9 @@ pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-me
|
|
| 76 |
#pipe = torch.compile(pipe)
|
| 77 |
# pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear")
|
| 78 |
|
| 79 |
-
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("ford442/stable-diffusion-xl-refiner-1.0-bf16", requires_aesthetics_score=True)
|
| 80 |
-
refiner.vae=vae
|
| 81 |
-
refiner.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", algorithm_type="sde-dpmsolver++")
|
| 82 |
-
refiner.to(device=torch.device("cuda:0"))
|
| 83 |
-
refiner.to(torch.bfloat16)
|
| 84 |
#refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float32, requires_aesthetics_score=True, device_map='balanced')
|
|
|
|
| 85 |
#refiner.enable_model_cpu_offload()
|
| 86 |
|
| 87 |
#refiner.scheduler.config.requires_aesthetics_score=False
|
|
@@ -121,7 +117,7 @@ def filter_text(text,phraseC):
|
|
| 121 |
MAX_SEED = np.iinfo(np.int32).max
|
| 122 |
MAX_IMAGE_SIZE = 4096
|
| 123 |
|
| 124 |
-
@spaces.GPU(duration=
|
| 125 |
def infer(
|
| 126 |
prompt,
|
| 127 |
negative_prompt,
|
|
|
|
| 53 |
except Exception as e:
|
| 54 |
print(f"FTP upload error: {e}")
|
| 55 |
|
| 56 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 57 |
torch_dtype = torch.bfloat16
|
| 58 |
|
| 59 |
checkpoint = "microsoft/Phi-3.5-mini-instruct"
|
| 60 |
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
| 61 |
+
vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
| 62 |
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(device=torch.device("cuda:0"), dtype=torch.bfloat16)
|
| 65 |
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(torch.device("cuda:0"))
|
| 66 |
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/RealVis_Medium_1.0b_bf16", torch_dtype=torch.bfloat16)
|
| 67 |
#pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium", token=hftoken, torch_dtype=torch.float32, device_map='balanced')
|
|
|
|
| 75 |
#pipe = torch.compile(pipe)
|
| 76 |
# pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear")
|
| 77 |
|
| 78 |
+
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("ford442/stable-diffusion-xl-refiner-1.0-bf16", vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16"), use_safetensors=True, requires_aesthetics_score=True).to(device=torch.device("cuda:0").to(torch.bfloat16)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
#refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float32, requires_aesthetics_score=True, device_map='balanced')
|
| 80 |
+
refiner.scheduler=EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config, beta_schedule="scaled_linear")
|
| 81 |
#refiner.enable_model_cpu_offload()
|
| 82 |
|
| 83 |
#refiner.scheduler.config.requires_aesthetics_score=False
|
|
|
|
| 117 |
MAX_SEED = np.iinfo(np.int32).max
|
| 118 |
MAX_IMAGE_SIZE = 4096
|
| 119 |
|
| 120 |
+
@spaces.GPU(duration=80)
|
| 121 |
def infer(
|
| 122 |
prompt,
|
| 123 |
negative_prompt,
|