Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -14,6 +14,9 @@ import paramiko
|
|
14 |
import urllib
|
15 |
import time
|
16 |
import os
|
|
|
|
|
|
|
17 |
|
18 |
FTP_HOST = "1ink.us"
|
19 |
FTP_USER = "ford442"
|
@@ -48,6 +51,31 @@ def upload_to_ftp(filename):
|
|
48 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
49 |
torch_dtype = torch.bfloat16
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
checkpoint = "microsoft/Phi-3.5-mini-instruct"
|
52 |
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
53 |
vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
@@ -186,23 +214,18 @@ def infer(
|
|
186 |
# device=pipe.device,
|
187 |
# generator=generator,
|
188 |
# )
|
189 |
-
sd_image_a =
|
190 |
-
|
191 |
-
#sd_image_b = pipe.vae.encode(sd_image_a.to(torch.bfloat16)).latent_dist.sample().mul_(0.18215)
|
192 |
-
print("-- using latent file --")
|
193 |
print('-- generating image --')
|
194 |
#with torch.no_grad():
|
195 |
-
sd_image =
|
196 |
-
prompt=enhanced_prompt,
|
197 |
-
|
198 |
-
|
199 |
num_inference_steps=num_inference_steps,
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
# output='latent',
|
204 |
-
generator=generator
|
205 |
-
).images[0]
|
206 |
rv_path = f"sd35_{seed}.png"
|
207 |
sd_image[0].save(rv_path,optimize=False,compress_level=0)
|
208 |
upload_to_ftp(rv_path)
|
@@ -329,7 +352,7 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
329 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
330 |
result = gr.Image(label="Result", show_label=False)
|
331 |
with gr.Accordion("Advanced Settings", open=False):
|
332 |
-
latent_file = gr.File(label="
|
333 |
negative_prompt = gr.Text(
|
334 |
label="Negative prompt",
|
335 |
max_lines=1,
|
|
|
14 |
import urllib
|
15 |
import time
|
16 |
import os
|
17 |
+
from ip_adapter import IPAdapterXL
|
18 |
+
from image_gen_aux import UpscaleWithModel
|
19 |
+
from huggingface_hub import snapshot_download
|
20 |
|
21 |
FTP_HOST = "1ink.us"
|
22 |
FTP_USER = "ford442"
|
|
|
51 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
52 |
torch_dtype = torch.bfloat16
|
53 |
|
54 |
+
|
55 |
+
repo_id = "ford442/SDXL-IP_ADAPTER"
|
56 |
+
subfolder = "image_encoder"
|
57 |
+
subfolder2 = "ip_adapter"
|
58 |
+
|
59 |
+
# Download the entire repository
|
60 |
+
local_repo_path = snapshot_download(repo_id=repo_id, repo_type="model")
|
61 |
+
|
62 |
+
# Construct the paths to the subfolders
|
63 |
+
local_folder = os.path.join(local_repo_path, subfolder)
|
64 |
+
local_folder2 = os.path.join(local_repo_path, subfolder2) # Path to the ip_adapter dir
|
65 |
+
|
66 |
+
print(f"Image encoder downloaded to: {local_folder}")
|
67 |
+
print(f"IP Adapter files downloaded to: {local_folder2}")
|
68 |
+
|
69 |
+
# Construct the path to the ip-adapter_sdxl.bin file
|
70 |
+
#ip_ckpt = os.path.join(local_folder2, "ip-adapter_sdxl.bin") # Correct path
|
71 |
+
ip_ckpt = os.path.join(local_folder2, "ip-adapter_sdxl_vit-h.bin") # Correct path
|
72 |
+
|
73 |
+
print(f"IP Adapter checkpoint path: {ip_ckpt}")
|
74 |
+
ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
|
75 |
+
|
76 |
+
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
|
77 |
+
|
78 |
+
|
79 |
checkpoint = "microsoft/Phi-3.5-mini-instruct"
|
80 |
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
81 |
vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
|
|
214 |
# device=pipe.device,
|
215 |
# generator=generator,
|
216 |
# )
|
217 |
+
sd_image_a = Image.open(latent_file.name)
|
218 |
+
print("-- using image file --")
|
|
|
|
|
219 |
print('-- generating image --')
|
220 |
#with torch.no_grad():
|
221 |
+
sd_image = ip_model.generate(
|
222 |
+
prompt=enhanced_prompt,
|
223 |
+
pil_image=sd_image_a,
|
224 |
+
num_samples=1,
|
225 |
num_inference_steps=num_inference_steps,
|
226 |
+
guidance_scale=guidance_scale,
|
227 |
+
seed=seed
|
228 |
+
)
|
|
|
|
|
|
|
229 |
rv_path = f"sd35_{seed}.png"
|
230 |
sd_image[0].save(rv_path,optimize=False,compress_level=0)
|
231 |
upload_to_ftp(rv_path)
|
|
|
352 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
353 |
result = gr.Image(label="Result", show_label=False)
|
354 |
with gr.Accordion("Advanced Settings", open=False):
|
355 |
+
latent_file = gr.File(label="Image File (optional)") # Add latents file input
|
356 |
negative_prompt = gr.Text(
|
357 |
label="Negative prompt",
|
358 |
max_lines=1,
|