ford442 commited on
Commit
7be8c80
·
verified ·
1 Parent(s): 9383295

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -15
app.py CHANGED
@@ -14,6 +14,9 @@ import paramiko
14
  import urllib
15
  import time
16
  import os
 
 
 
17
 
18
  FTP_HOST = "1ink.us"
19
  FTP_USER = "ford442"
@@ -48,6 +51,31 @@ def upload_to_ftp(filename):
48
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
49
  torch_dtype = torch.bfloat16
50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  checkpoint = "microsoft/Phi-3.5-mini-instruct"
52
  #vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
53
  vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
@@ -186,23 +214,18 @@ def infer(
186
  # device=pipe.device,
187
  # generator=generator,
188
  # )
189
- sd_image_a = torch.load(latent_file.name) # Load the latent
190
- # initial_latents += sd_image_a
191
- #sd_image_b = pipe.vae.encode(sd_image_a.to(torch.bfloat16)).latent_dist.sample().mul_(0.18215)
192
- print("-- using latent file --")
193
  print('-- generating image --')
194
  #with torch.no_grad():
195
- sd_image = pipe(
196
- prompt=enhanced_prompt, # This conversion is fine
197
- negative_prompt=negative_prompt,
198
- guidance_scale=guidance_scale,
199
  num_inference_steps=num_inference_steps,
200
- width=width,
201
- height=height,
202
- latents=sd_image_a,
203
- # output='latent',
204
- generator=generator
205
- ).images[0]
206
  rv_path = f"sd35_{seed}.png"
207
  sd_image[0].save(rv_path,optimize=False,compress_level=0)
208
  upload_to_ftp(rv_path)
@@ -329,7 +352,7 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
329
  run_button = gr.Button("Run", scale=0, variant="primary")
330
  result = gr.Image(label="Result", show_label=False)
331
  with gr.Accordion("Advanced Settings", open=False):
332
- latent_file = gr.File(label="Latents File (optional)") # Add latents file input
333
  negative_prompt = gr.Text(
334
  label="Negative prompt",
335
  max_lines=1,
 
14
  import urllib
15
  import time
16
  import os
17
+ from ip_adapter import IPAdapterXL
18
+ from image_gen_aux import UpscaleWithModel
19
+ from huggingface_hub import snapshot_download
20
 
21
  FTP_HOST = "1ink.us"
22
  FTP_USER = "ford442"
 
51
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
52
  torch_dtype = torch.bfloat16
53
 
54
+
55
+ repo_id = "ford442/SDXL-IP_ADAPTER"
56
+ subfolder = "image_encoder"
57
+ subfolder2 = "ip_adapter"
58
+
59
+ # Download the entire repository
60
+ local_repo_path = snapshot_download(repo_id=repo_id, repo_type="model")
61
+
62
+ # Construct the paths to the subfolders
63
+ local_folder = os.path.join(local_repo_path, subfolder)
64
+ local_folder2 = os.path.join(local_repo_path, subfolder2) # Path to the ip_adapter dir
65
+
66
+ print(f"Image encoder downloaded to: {local_folder}")
67
+ print(f"IP Adapter files downloaded to: {local_folder2}")
68
+
69
+ # Construct the path to the ip-adapter_sdxl.bin file
70
+ #ip_ckpt = os.path.join(local_folder2, "ip-adapter_sdxl.bin") # Correct path
71
+ ip_ckpt = os.path.join(local_folder2, "ip-adapter_sdxl_vit-h.bin") # Correct path
72
+
73
+ print(f"IP Adapter checkpoint path: {ip_ckpt}")
74
+ ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
75
+
76
+ upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
77
+
78
+
79
  checkpoint = "microsoft/Phi-3.5-mini-instruct"
80
  #vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
81
  vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
 
214
  # device=pipe.device,
215
  # generator=generator,
216
  # )
217
+ sd_image_a = Image.open(latent_file.name)
218
+ print("-- using image file --")
 
 
219
  print('-- generating image --')
220
  #with torch.no_grad():
221
+ sd_image = ip_model.generate(
222
+ prompt=enhanced_prompt,
223
+ pil_image=sd_image_a,
224
+ num_samples=1,
225
  num_inference_steps=num_inference_steps,
226
+ guidance_scale=guidance_scale,
227
+ seed=seed
228
+ )
 
 
 
229
  rv_path = f"sd35_{seed}.png"
230
  sd_image[0].save(rv_path,optimize=False,compress_level=0)
231
  upload_to_ftp(rv_path)
 
352
  run_button = gr.Button("Run", scale=0, variant="primary")
353
  result = gr.Image(label="Result", show_label=False)
354
  with gr.Accordion("Advanced Settings", open=False):
355
+ latent_file = gr.File(label="Image File (optional)") # Add latents file input
356
  negative_prompt = gr.Text(
357
  label="Negative prompt",
358
  max_lines=1,