Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -203,6 +203,9 @@ def infer(
|
|
203 |
# output='latent',
|
204 |
generator=generator
|
205 |
).images[0]
|
|
|
|
|
|
|
206 |
else:
|
207 |
print('-- generating image --')
|
208 |
#with torch.no_grad():
|
@@ -221,20 +224,17 @@ def infer(
|
|
221 |
max_sequence_length=512
|
222 |
).images[0]
|
223 |
print('-- got image --')
|
224 |
-
|
225 |
sd35_image_image = pipe.vae.decode(sd_image / 0.18215).sample
|
226 |
sd35_image = sd35_image.cpu().permute(0, 2, 3, 1).float().detach().numpy()
|
227 |
sd35_image = (sd35_image * 255).round().astype("uint8")
|
228 |
image_pil = Image.fromarray(sd35_image[0])
|
229 |
-
sd35_path = f"
|
230 |
image_pil.save(sd35_path,optimize=False,compress_level=0)
|
231 |
upload_to_ftp(sd35_path)
|
232 |
|
233 |
-
|
234 |
#sd35_path = f"sd35_{seed}.png"
|
235 |
#sd_image.save(sd35_path,optimize=False,compress_level=0)
|
236 |
#upload_to_ftp(sd35_path)
|
237 |
-
|
238 |
# Convert the generated image to a tensor
|
239 |
#generated_image_tensor = torch.tensor([np.array(sd_image).transpose(2, 0, 1)]).to('cuda') / 255.0
|
240 |
# Encode the generated image into latents
|
@@ -253,7 +253,7 @@ def infer(
|
|
253 |
image=sd_image,
|
254 |
generator=generator,
|
255 |
).images[0]
|
256 |
-
refine_path = f"
|
257 |
refine.save(refine_path,optimize=False,compress_level=0)
|
258 |
upload_to_ftp(refine_path)
|
259 |
return refine, seed, enhanced_prompt
|
|
|
203 |
# output='latent',
|
204 |
generator=generator
|
205 |
).images[0]
|
206 |
+
rv_path = f"sd35_{seed}.png"
|
207 |
+
sd_image[0].save(rv_path,optimize=False,compress_level=0)
|
208 |
+
upload_to_ftp(rv_path)
|
209 |
else:
|
210 |
print('-- generating image --')
|
211 |
#with torch.no_grad():
|
|
|
224 |
max_sequence_length=512
|
225 |
).images[0]
|
226 |
print('-- got image --')
|
|
|
227 |
sd35_image_image = pipe.vae.decode(sd_image / 0.18215).sample
|
228 |
sd35_image = sd35_image.cpu().permute(0, 2, 3, 1).float().detach().numpy()
|
229 |
sd35_image = (sd35_image * 255).round().astype("uint8")
|
230 |
image_pil = Image.fromarray(sd35_image[0])
|
231 |
+
sd35_path = f"sd35_{seed}.png"
|
232 |
image_pil.save(sd35_path,optimize=False,compress_level=0)
|
233 |
upload_to_ftp(sd35_path)
|
234 |
|
|
|
235 |
#sd35_path = f"sd35_{seed}.png"
|
236 |
#sd_image.save(sd35_path,optimize=False,compress_level=0)
|
237 |
#upload_to_ftp(sd35_path)
|
|
|
238 |
# Convert the generated image to a tensor
|
239 |
#generated_image_tensor = torch.tensor([np.array(sd_image).transpose(2, 0, 1)]).to('cuda') / 255.0
|
240 |
# Encode the generated image into latents
|
|
|
253 |
image=sd_image,
|
254 |
generator=generator,
|
255 |
).images[0]
|
256 |
+
refine_path = f"sd35_refine_{seed}.png"
|
257 |
refine.save(refine_path,optimize=False,compress_level=0)
|
258 |
upload_to_ftp(refine_path)
|
259 |
return refine, seed, enhanced_prompt
|