Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
#import tensorrt as trt
|
6 |
+
|
7 |
+
import random
|
8 |
+
import torch
|
9 |
+
from diffusers import StableDiffusion3Pipeline, AutoencoderKL, StableDiffusionXLImg2ImgPipeline, EDMEulerScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler
|
10 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
11 |
+
from threading import Thread
|
12 |
+
from transformers import pipeline
|
13 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
14 |
+
import re
|
15 |
+
import paramiko
|
16 |
+
import urllib
|
17 |
+
import time
|
18 |
+
import os
|
19 |
+
|
20 |
+
FTP_HOST = "1ink.us"
|
21 |
+
FTP_USER = "ford442"
|
22 |
+
FTP_PASS = "GoogleBez12!"
|
23 |
+
FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server
|
24 |
+
|
25 |
+
torch.backends.cuda.matmul.allow_tf32 = False
|
26 |
+
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
27 |
+
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
28 |
+
torch.backends.cudnn.allow_tf32 = False
|
29 |
+
torch.backends.cudnn.deterministic = False
|
30 |
+
torch.backends.cudnn.benchmark = False
|
31 |
+
torch.backends.cuda.preferred_blas_library="cublas"
|
32 |
+
torch.backends.cuda.preferred_linalg_library="cusolver"
|
33 |
+
|
34 |
+
torch.set_float32_matmul_precision("highest")
|
35 |
+
|
36 |
+
def upload_to_ftp(filename):
|
37 |
+
try:
|
38 |
+
transport = paramiko.Transport((FTP_HOST, 22))
|
39 |
+
destination_path=FTP_DIR+filename
|
40 |
+
transport.connect(username = FTP_USER, password = FTP_PASS)
|
41 |
+
sftp = paramiko.SFTPClient.from_transport(transport)
|
42 |
+
sftp.put(filename, destination_path)
|
43 |
+
sftp.close()
|
44 |
+
transport.close()
|
45 |
+
print(f"Uploaded {filename} to FTP server")
|
46 |
+
except Exception as e:
|
47 |
+
print(f"FTP upload error: {e}")
|
48 |
+
|
49 |
+
device = torch.device("cuda")
|
50 |
+
torch_dtype = torch.bfloat16
|
51 |
+
|
52 |
+
checkpoint = "microsoft/Phi-3.5-mini-instruct"
|
53 |
+
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
54 |
+
vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", torch_dtype=torch.bfloat16, device_map='balanced')
|
55 |
+
|
56 |
+
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16", torch_dtype=torch.bfloat16, device_map='balanced')
|
57 |
+
pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", torch_dtype=torch.float32, device_map='balanced')
|
58 |
+
|
59 |
+
# pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++")
|
60 |
+
|
61 |
+
#pipe.scheduler.config.requires_aesthetics_score = False
|
62 |
+
#pipe.enable_model_cpu_offload()
|
63 |
+
#pipe.to(device)
|
64 |
+
#pipe = torch.compile(pipe)
|
65 |
+
# pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear")
|
66 |
+
|
67 |
+
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("ford442/stable-diffusion-xl-refiner-1.0-bf16", vae=vae, torch_dtype=torch.bfloat16, use_safetensors=True, requires_aesthetics_score=True, device_map='balanced')
|
68 |
+
#refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float32, requires_aesthetics_score=True, device_map='balanced')
|
69 |
+
|
70 |
+
#refiner.enable_model_cpu_offload()
|
71 |
+
|
72 |
+
#refiner.scheduler.config.requires_aesthetics_score=False
|
73 |
+
#refiner.to(device)
|
74 |
+
#refiner = torch.compile(refiner)
|
75 |
+
refiner.scheduler = EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config, beta_schedule="scaled_linear")
|
76 |
+
|
77 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint, add_prefix_space=False, device_map='balanced')
|
78 |
+
tokenizer.tokenizer_legacy=False
|
79 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map='balanced')
|
80 |
+
#model = torch.compile(model)
|
81 |
+
|
82 |
+
def filter_text(text):
|
83 |
+
"""Filters out the text up to and including 'Rewritten Prompt:'."""
|
84 |
+
pattern = r".*?Rewritten Prompt:\s*" # Matches any characters up to 'Rewritten Prompt:'
|
85 |
+
filtered_text = re.sub(pattern, "", text,flags=re.DOTALL) # Removes the matched pattern from the text
|
86 |
+
return filtered_text
|
87 |
+
|
88 |
+
MAX_SEED = np.iinfo(np.int32).max
|
89 |
+
MAX_IMAGE_SIZE = 4096
|
90 |
+
|
91 |
+
@spaces.GPU(duration=60)
|
92 |
+
def infer(
|
93 |
+
prompt,
|
94 |
+
negative_prompt,
|
95 |
+
seed,
|
96 |
+
randomize_seed,
|
97 |
+
width,
|
98 |
+
height,
|
99 |
+
guidance_scale,
|
100 |
+
num_inference_steps,
|
101 |
+
progress=gr.Progress(track_tqdm=True),
|
102 |
+
):
|
103 |
+
seed = random.randint(0, MAX_SEED)
|
104 |
+
generator = torch.Generator(device='cpu').manual_seed(seed)
|
105 |
+
|
106 |
+
system_prompt_rewrite = (
|
107 |
+
"You are an AI assistant that rewrites image prompts to be more descriptive and detailed."
|
108 |
+
)
|
109 |
+
user_prompt_rewrite = (
|
110 |
+
"Rewrite this prompt to be more descriptive and detailed: "
|
111 |
+
)
|
112 |
+
input_text = f"{system_prompt_rewrite} {user_prompt_rewrite} {prompt}"
|
113 |
+
print("-- got prompt --")
|
114 |
+
# Encode the input text and include the attention mask
|
115 |
+
encoded_inputs = tokenizer(
|
116 |
+
input_text, return_tensors="pt", return_attention_mask=True
|
117 |
+
)
|
118 |
+
# Ensure all values are on the correct device
|
119 |
+
input_ids = encoded_inputs["input_ids"].to(device)
|
120 |
+
attention_mask = encoded_inputs["attention_mask"].to(device)
|
121 |
+
print("-- tokenize prompt --")
|
122 |
+
# Google T5
|
123 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
124 |
+
outputs = model.generate(
|
125 |
+
input_ids=input_ids,
|
126 |
+
attention_mask=attention_mask,
|
127 |
+
max_new_tokens=77,
|
128 |
+
temperature=0.2,
|
129 |
+
top_p=0.9,
|
130 |
+
do_sample=True,
|
131 |
+
)
|
132 |
+
# Use the encoded tensor 'text_inputs' here
|
133 |
+
enhanced_prompt = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
134 |
+
print('-- generated prompt --')
|
135 |
+
print(enhanced_prompt)
|
136 |
+
enhanced_prompt = filter_text(enhanced_prompt)
|
137 |
+
print('-- filtered prompt --')
|
138 |
+
print(enhanced_prompt)
|
139 |
+
print('-- generating image --')
|
140 |
+
sd_image = pipe(
|
141 |
+
prompt=enhanced_prompt, # This conversion is fine
|
142 |
+
negative_prompt=negative_prompt,
|
143 |
+
guidance_scale=guidance_scale,
|
144 |
+
num_inference_steps=num_inference_steps,
|
145 |
+
width=width,
|
146 |
+
height=height,
|
147 |
+
generator=generator
|
148 |
+
).images[0]
|
149 |
+
print('-- got image --')
|
150 |
+
image_path = f"sd35m_{seed}.png"
|
151 |
+
sd_image.save(image_path)
|
152 |
+
upload_to_ftp(image_path)
|
153 |
+
refine = refiner(
|
154 |
+
prompt=f"{prompt}, high quality masterpiece, complex details",
|
155 |
+
negative_prompt = negative_prompt,
|
156 |
+
guidance_scale=7.5,
|
157 |
+
num_inference_steps=num_inference_steps,
|
158 |
+
image=sd_image,
|
159 |
+
generator=generator,
|
160 |
+
).images[0]
|
161 |
+
refine_path = f"refine_{seed}.png"
|
162 |
+
refine.save(refine_path)
|
163 |
+
upload_to_ftp(refine_path)
|
164 |
+
return refine, seed, refine_path, enhanced_prompt
|
165 |
+
|
166 |
+
examples = [
|
167 |
+
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
168 |
+
"An astronaut riding a green horse",
|
169 |
+
"A delicious ceviche cheesecake slice",
|
170 |
+
]
|
171 |
+
|
172 |
+
css = """
|
173 |
+
#col-container {
|
174 |
+
margin: 0 auto;
|
175 |
+
max-width: 640px;
|
176 |
+
}
|
177 |
+
"""
|
178 |
+
|
179 |
+
def repeat_infer(
|
180 |
+
prompt,
|
181 |
+
negative_prompt,
|
182 |
+
seed,
|
183 |
+
randomize_seed,
|
184 |
+
width,
|
185 |
+
height,
|
186 |
+
guidance_scale,
|
187 |
+
num_inference_steps,
|
188 |
+
num_iterations, # New input for number of iterations
|
189 |
+
):
|
190 |
+
i = 0
|
191 |
+
while i < num_iterations:
|
192 |
+
time.sleep(700) # Wait for 10 minutes (600 seconds)
|
193 |
+
result, seed, image_path, enhanced_prompt = infer(
|
194 |
+
prompt,
|
195 |
+
negative_prompt,
|
196 |
+
seed,
|
197 |
+
randomize_seed,
|
198 |
+
width,
|
199 |
+
height,
|
200 |
+
guidance_scale,
|
201 |
+
num_inference_steps,
|
202 |
+
)
|
203 |
+
|
204 |
+
# Optionally, you can add logic here to process the results of each iteration
|
205 |
+
# For example, you could display the image, save it with a different name, etc.
|
206 |
+
i += 1
|
207 |
+
return result, seed, image_path, enhanced_prompt
|
208 |
+
|
209 |
+
|
210 |
+
with gr.Blocks(css=css) as demo:
|
211 |
+
with gr.Column(elem_id="col-container"):
|
212 |
+
gr.Markdown(" # Text-to-Text-to-Image StableDiffusion 3.5 Medium (with refine)")
|
213 |
+
expanded_prompt_output = gr.Textbox(label="Expanded Prompt", lines=5) # Add this line
|
214 |
+
gr.File(label="Latents File (optional)"), # Add a file input for latents
|
215 |
+
with gr.Row():
|
216 |
+
prompt = gr.Text(
|
217 |
+
label="Prompt",
|
218 |
+
show_label=False,
|
219 |
+
max_lines=1,
|
220 |
+
placeholder="Enter your prompt",
|
221 |
+
value="A captivating Christmas scene.",
|
222 |
+
container=False,
|
223 |
+
)
|
224 |
+
run_button = gr.Button("Run", scale=0, variant="primary")
|
225 |
+
result = gr.Image(label="Result", show_label=False)
|
226 |
+
with gr.Accordion("Advanced Settings", open=False):
|
227 |
+
negative_prompt = gr.Text(
|
228 |
+
label="Negative prompt",
|
229 |
+
max_lines=1,
|
230 |
+
placeholder="Enter a negative prompt",
|
231 |
+
visible=False,
|
232 |
+
)
|
233 |
+
num_iterations = gr.Number(
|
234 |
+
value=1000,
|
235 |
+
label="Number of Iterations")
|
236 |
+
seed = gr.Slider(
|
237 |
+
label="Seed",
|
238 |
+
minimum=0,
|
239 |
+
maximum=MAX_SEED,
|
240 |
+
step=1,
|
241 |
+
value=0,
|
242 |
+
)
|
243 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
244 |
+
with gr.Row():
|
245 |
+
width = gr.Slider(
|
246 |
+
label="Width",
|
247 |
+
minimum=256,
|
248 |
+
maximum=MAX_IMAGE_SIZE,
|
249 |
+
step=32,
|
250 |
+
value=768, # Replace with defaults that work for your model
|
251 |
+
)
|
252 |
+
height = gr.Slider(
|
253 |
+
label="Height",
|
254 |
+
minimum=256,
|
255 |
+
maximum=MAX_IMAGE_SIZE,
|
256 |
+
step=32,
|
257 |
+
value=768, # Replace with defaults that work for your model
|
258 |
+
)
|
259 |
+
guidance_scale = gr.Slider(
|
260 |
+
label="Guidance scale",
|
261 |
+
minimum=0.0,
|
262 |
+
maximum=10.0,
|
263 |
+
step=0.1,
|
264 |
+
value=5.0, # Replace with defaults that work for your model
|
265 |
+
)
|
266 |
+
num_inference_steps = gr.Slider(
|
267 |
+
label="Number of inference steps",
|
268 |
+
minimum=1,
|
269 |
+
maximum=500,
|
270 |
+
step=1,
|
271 |
+
value=75, # Replace with defaults that work for your model
|
272 |
+
)
|
273 |
+
save_button = gr.Button("Save Image")
|
274 |
+
image_path_output = gr.Text(visible=False) # Hidden component to store the path
|
275 |
+
save_button.click(
|
276 |
+
fn=lambda image_path: None, # No-op function, the path is already available
|
277 |
+
inputs=[image_path_output],
|
278 |
+
outputs=None,
|
279 |
+
)
|
280 |
+
gr.Examples(examples=examples, inputs=[prompt])
|
281 |
+
gr.on(
|
282 |
+
triggers=[run_button.click, prompt.submit],
|
283 |
+
fn=infer,
|
284 |
+
inputs=[
|
285 |
+
prompt,
|
286 |
+
negative_prompt,
|
287 |
+
seed,
|
288 |
+
randomize_seed,
|
289 |
+
width,
|
290 |
+
height,
|
291 |
+
guidance_scale,
|
292 |
+
num_inference_steps,
|
293 |
+
],
|
294 |
+
outputs=[result, seed, image_path_output, expanded_prompt_output],
|
295 |
+
)
|
296 |
+
|
297 |
+
if __name__ == "__main__":
|
298 |
+
demo.launch()
|