ford442 commited on
Commit
111bf4a
·
verified ·
1 Parent(s): e4cbc72

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -28
app.py CHANGED
@@ -15,15 +15,13 @@ import os
15
  from image_gen_aux import UpscaleWithModel
16
  from huggingface_hub import hf_hub_download
17
 
 
 
18
  #from diffusers import SD3Transformer2DModel, AutoencoderKL
19
  #from models.transformer_sd3 import SD3Transformer2DModel
20
  #from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
21
- from PIL import Image
22
 
23
- FTP_HOST = "1ink.us"
24
- FTP_USER = "ford442"
25
- FTP_PASS = "GoogleBez12!"
26
- FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server
27
 
28
  torch.backends.cuda.matmul.allow_tf32 = False
29
  torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
@@ -36,6 +34,16 @@ torch.backends.cudnn.benchmark = False
36
 
37
  hftoken = os.getenv("HF_AUTH_TOKEN")
38
 
 
 
 
 
 
 
 
 
 
 
39
  def upload_to_ftp(filename):
40
  try:
41
  transport = paramiko.Transport((FTP_HOST, 22))
@@ -48,6 +56,10 @@ def upload_to_ftp(filename):
48
  print(f"Uploaded {filename} to FTP server")
49
  except Exception as e:
50
  print(f"FTP upload error: {e}")
 
 
 
 
51
 
52
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
53
  torch_dtype = torch.bfloat16
@@ -68,10 +80,7 @@ pipe = StableDiffusion3Pipeline.from_pretrained(
68
  )
69
 
70
  #pipe.to(device=device, dtype=torch.bfloat16)
71
-
72
- #pipe.enable_model_cpu_offload()
73
  pipe.to(device)
74
- #pipe.to(device=device, dtype=torch.bfloat16)
75
 
76
  upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device('cpu'))
77
 
@@ -79,7 +88,7 @@ MAX_SEED = np.iinfo(np.int32).max
79
 
80
  MAX_IMAGE_SIZE = 4096
81
 
82
- @spaces.GPU(duration=30)
83
  def infer_30(
84
  prompt,
85
  negative_prompt_1,
@@ -110,21 +119,22 @@ def infer_30(
110
  max_sequence_length=512
111
  ).images[0]
112
  print('-- got image --')
113
- sd35_path = f"sd35l_{seed}.png"
 
114
  sd_image.save(sd35_path,optimize=False,compress_level=0)
115
- upload_to_ftp(sd35_path)
116
  # pipe.unet.to('cpu')
117
  upscaler_2.to(torch.device('cuda'))
118
  with torch.no_grad():
119
  upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
120
  print('-- got upscaled image --')
121
  downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
122
- upscale_path = f"sd35l_upscale_{seed}.png"
123
  downscale2.save(upscale_path,optimize=False,compress_level=0)
124
- upload_to_ftp(upscale_path)
125
  return sd_image, prompt
126
 
127
- @spaces.GPU(duration=60)
128
  def infer_60(
129
  prompt,
130
  negative_prompt_1,
@@ -155,21 +165,22 @@ def infer_60(
155
  max_sequence_length=512
156
  ).images[0]
157
  print('-- got image --')
158
- sd35_path = f"sd35l_{seed}.png"
 
159
  sd_image.save(sd35_path,optimize=False,compress_level=0)
160
- upload_to_ftp(sd35_path)
161
  # pipe.unet.to('cpu')
162
  upscaler_2.to(torch.device('cuda'))
163
  with torch.no_grad():
164
  upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
165
  print('-- got upscaled image --')
166
  downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
167
- upscale_path = f"sd35l_upscale_{seed}.png"
168
  downscale2.save(upscale_path,optimize=False,compress_level=0)
169
- upload_to_ftp(upscale_path)
170
  return sd_image, prompt
171
 
172
- @spaces.GPU(duration=90)
173
  def infer_90(
174
  prompt,
175
  negative_prompt_1,
@@ -200,21 +211,22 @@ def infer_90(
200
  max_sequence_length=512
201
  ).images[0]
202
  print('-- got image --')
203
- sd35_path = f"sd35l_{seed}.png"
 
204
  sd_image.save(sd35_path,optimize=False,compress_level=0)
205
- upload_to_ftp(sd35_path)
206
  # pipe.unet.to('cpu')
207
  upscaler_2.to(torch.device('cuda'))
208
  with torch.no_grad():
209
  upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
210
  print('-- got upscaled image --')
211
  downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
212
- upscale_path = f"sd35l_upscale_{seed}.png"
213
  downscale2.save(upscale_path,optimize=False,compress_level=0)
214
- upload_to_ftp(upscale_path)
215
  return sd_image, prompt
216
 
217
- @spaces.GPU(duration=100)
218
  def infer_100(
219
  prompt,
220
  negative_prompt_1,
@@ -245,18 +257,19 @@ def infer_100(
245
  max_sequence_length=512
246
  ).images[0]
247
  print('-- got image --')
248
- sd35_path = f"sd35l_{seed}.png"
 
249
  sd_image.save(sd35_path,optimize=False,compress_level=0)
250
- upload_to_ftp(sd35_path)
251
  # pipe.unet.to('cpu')
252
  upscaler_2.to(torch.device('cuda'))
253
  with torch.no_grad():
254
  upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
255
  print('-- got upscaled image --')
256
  downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
257
- upscale_path = f"sd35l_upscale_{seed}.png"
258
  downscale2.save(upscale_path,optimize=False,compress_level=0)
259
- upload_to_ftp(upscale_path)
260
  return sd_image, prompt
261
 
262
  css = """
 
15
  from image_gen_aux import UpscaleWithModel
16
  from huggingface_hub import hf_hub_download
17
 
18
+ import cyper
19
+
20
  #from diffusers import SD3Transformer2DModel, AutoencoderKL
21
  #from models.transformer_sd3 import SD3Transformer2DModel
22
  #from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
 
23
 
24
+ from PIL import Image
 
 
 
25
 
26
  torch.backends.cuda.matmul.allow_tf32 = False
27
  torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
 
34
 
35
  hftoken = os.getenv("HF_AUTH_TOKEN")
36
 
37
+
38
+ code = r'''
39
+ import torch
40
+ import paramiko
41
+ import os
42
+ FTP_HOST = os.getenv("FTP_HOST")
43
+ FTP_USER = os.getenv("FTP_USER")
44
+ FTP_PASS = os.getenv("FTP_PASS")
45
+ FTP_DIR = os.getenv("FTP_DIR")
46
+
47
  def upload_to_ftp(filename):
48
  try:
49
  transport = paramiko.Transport((FTP_HOST, 22))
 
56
  print(f"Uploaded {filename} to FTP server")
57
  except Exception as e:
58
  print(f"FTP upload error: {e}")
59
+
60
+ '''
61
+
62
+ pyx = cyper.inline(code, fast_indexing=True, directives=dict(boundscheck=False, wraparound=False, language_level=3))
63
 
64
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
65
  torch_dtype = torch.bfloat16
 
80
  )
81
 
82
  #pipe.to(device=device, dtype=torch.bfloat16)
 
 
83
  pipe.to(device)
 
84
 
85
  upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device('cpu'))
86
 
 
88
 
89
  MAX_IMAGE_SIZE = 4096
90
 
91
+ @spaces.GPU(duration=40)
92
  def infer_30(
93
  prompt,
94
  negative_prompt_1,
 
119
  max_sequence_length=512
120
  ).images[0]
121
  print('-- got image --')
122
+ timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
123
+ sd35_path = f"sd35l_{timestamp}.png"
124
  sd_image.save(sd35_path,optimize=False,compress_level=0)
125
+ pyx.upload_to_ftp(sd35_path)
126
  # pipe.unet.to('cpu')
127
  upscaler_2.to(torch.device('cuda'))
128
  with torch.no_grad():
129
  upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
130
  print('-- got upscaled image --')
131
  downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
132
+ upscale_path = f"sd35l_upscale_{timestamp}.png"
133
  downscale2.save(upscale_path,optimize=False,compress_level=0)
134
+ pyx.upload_to_ftp(upscale_path)
135
  return sd_image, prompt
136
 
137
+ @spaces.GPU(duration=70)
138
  def infer_60(
139
  prompt,
140
  negative_prompt_1,
 
165
  max_sequence_length=512
166
  ).images[0]
167
  print('-- got image --')
168
+ timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
169
+ sd35_path = f"sd35l_{timestamp}.png"
170
  sd_image.save(sd35_path,optimize=False,compress_level=0)
171
+ pyx.upload_to_ftp(sd35_path)
172
  # pipe.unet.to('cpu')
173
  upscaler_2.to(torch.device('cuda'))
174
  with torch.no_grad():
175
  upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
176
  print('-- got upscaled image --')
177
  downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
178
+ upscale_path = f"sd35l_upscale_{timestamp}.png"
179
  downscale2.save(upscale_path,optimize=False,compress_level=0)
180
+ pyx.upload_to_ftp(upscale_path)
181
  return sd_image, prompt
182
 
183
+ @spaces.GPU(duration=100)
184
  def infer_90(
185
  prompt,
186
  negative_prompt_1,
 
211
  max_sequence_length=512
212
  ).images[0]
213
  print('-- got image --')
214
+ timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
215
+ sd35_path = f"sd35l_{timestamp}.png"
216
  sd_image.save(sd35_path,optimize=False,compress_level=0)
217
+ pyx.upload_to_ftp(sd35_path)
218
  # pipe.unet.to('cpu')
219
  upscaler_2.to(torch.device('cuda'))
220
  with torch.no_grad():
221
  upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
222
  print('-- got upscaled image --')
223
  downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
224
+ upscale_path = f"sd35l_upscale_{timestamp}.png"
225
  downscale2.save(upscale_path,optimize=False,compress_level=0)
226
+ pyx.upload_to_ftp(upscale_path)
227
  return sd_image, prompt
228
 
229
+ @spaces.GPU(duration=110)
230
  def infer_100(
231
  prompt,
232
  negative_prompt_1,
 
257
  max_sequence_length=512
258
  ).images[0]
259
  print('-- got image --')
260
+ timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
261
+ sd35_path = f"sd35l_{timestamp}.png"
262
  sd_image.save(sd35_path,optimize=False,compress_level=0)
263
+ pyx.upload_to_ftp(sd35_path)
264
  # pipe.unet.to('cpu')
265
  upscaler_2.to(torch.device('cuda'))
266
  with torch.no_grad():
267
  upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
268
  print('-- got upscaled image --')
269
  downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
270
+ upscale_path = f"sd35l_upscale_{timestamp}.png"
271
  downscale2.save(upscale_path,optimize=False,compress_level=0)
272
+ pyx.upload_to_ftp(upscale_path)
273
  return sd_image, prompt
274
 
275
  css = """