Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -62,7 +62,7 @@ checkpoint = "microsoft/Phi-3.5-mini-instruct"
|
|
62 |
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
63 |
vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False) #, device_map='cpu') #.to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
|
64 |
|
65 |
-
pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16")
|
66 |
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(torch.device("cuda:0"))
|
67 |
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/RealVis_Medium_1.0b_bf16", torch_dtype=torch.bfloat16)
|
68 |
#pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium", token=hftoken, torch_dtype=torch.float32, device_map='balanced')
|
@@ -81,6 +81,8 @@ refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("ford442/stable-diffu
|
|
81 |
refiner.scheduler=EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config)
|
82 |
#refiner.enable_model_cpu_offload()
|
83 |
|
|
|
|
|
84 |
#refiner.scheduler.config.requires_aesthetics_score=False
|
85 |
#refiner.to(device)
|
86 |
#refiner = torch.compile(refiner)
|
@@ -133,7 +135,6 @@ def infer(
|
|
133 |
progress=gr.Progress(track_tqdm=True),
|
134 |
):
|
135 |
upscaler_2.to(torch.device('cpu'))
|
136 |
-
pipe.to(device=device, dtype=torch.bfloat16)
|
137 |
torch.set_float32_matmul_precision("highest")
|
138 |
seed = random.randint(0, MAX_SEED)
|
139 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
|
|
62 |
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
63 |
vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False) #, device_map='cpu') #.to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
|
64 |
|
65 |
+
pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(device=device, dtype=torch.bfloat16)
|
66 |
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(torch.device("cuda:0"))
|
67 |
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/RealVis_Medium_1.0b_bf16", torch_dtype=torch.bfloat16)
|
68 |
#pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium", token=hftoken, torch_dtype=torch.float32, device_map='balanced')
|
|
|
81 |
refiner.scheduler=EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config)
|
82 |
#refiner.enable_model_cpu_offload()
|
83 |
|
84 |
+
#pipe.to(device=device, dtype=torch.bfloat16)
|
85 |
+
|
86 |
#refiner.scheduler.config.requires_aesthetics_score=False
|
87 |
#refiner.to(device)
|
88 |
#refiner = torch.compile(refiner)
|
|
|
135 |
progress=gr.Progress(track_tqdm=True),
|
136 |
):
|
137 |
upscaler_2.to(torch.device('cpu'))
|
|
|
138 |
torch.set_float32_matmul_precision("highest")
|
139 |
seed = random.randint(0, MAX_SEED)
|
140 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|