File size: 41,185 Bytes
16178c1
ad8946e
 
 
 
 
 
 
16178c1
ad8946e
ee400a8
16178c1
ad8946e
8efc195
ad8946e
730bdf9
16178c1
5565ca5
730bdf9
ad8946e
 
3cd2108
16178c1
f81b425
730bdf9
 
 
8efc195
ad8946e
730bdf9
 
0255b8c
ad8946e
0255b8c
ad8946e
730bdf9
ad8946e
730bdf9
 
 
 
 
ad8946e
8efc195
 
ad8946e
 
 
 
 
7f69142
16178c1
 
 
 
 
 
 
 
 
1831948
730bdf9
ad8946e
 
 
 
 
730bdf9
ad8946e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
730bdf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5565ca5
9b4ede0
5565ca5
 
 
 
 
 
 
 
 
 
 
 
 
 
01f0185
8efc195
5565ca5
 
 
5fcde85
9b4ede0
16178c1
 
 
 
 
 
 
 
 
 
 
 
 
1831948
730bdf9
5fcde85
ad8946e
 
730bdf9
 
dec9aa7
5fcde85
5565ca5
5fcde85
5565ca5
5fcde85
 
5565ca5
5fcde85
9b4ede0
 
 
5fcde85
 
 
5565ca5
5fcde85
 
5565ca5
 
 
730bdf9
 
 
 
 
 
5fcde85
 
 
 
16178c1
 
0255b8c
 
 
 
16178c1
 
 
 
 
730bdf9
16178c1
 
 
 
ad8946e
730bdf9
 
ad8946e
86bd3cd
 
 
 
981f52f
86bd3cd
 
dec9aa7
 
 
 
86bd3cd
981f52f
 
5565ca5
ad8946e
 
 
 
 
 
 
 
730bdf9
ad8946e
 
730bdf9
ad8946e
 
730bdf9
ad8946e
 
 
 
 
730bdf9
ad8946e
 
 
 
8efc195
 
ad8946e
 
 
 
 
 
 
1831948
 
 
ad8946e
 
 
 
16178c1
 
 
 
0255b8c
16178c1
 
 
0255b8c
 
 
16178c1
 
0255b8c
 
16178c1
 
 
 
0255b8c
16178c1
ad8946e
 
16178c1
 
 
 
 
 
 
 
 
 
 
ad8946e
0255b8c
730bdf9
 
 
16178c1
 
 
 
 
 
730bdf9
 
 
 
 
16178c1
730bdf9
 
 
16178c1
730bdf9
16178c1
730bdf9
16178c1
730bdf9
 
 
 
 
 
 
 
 
 
16178c1
730bdf9
ad8946e
16178c1
730bdf9
5565ca5
16178c1
730bdf9
dec9aa7
730bdf9
86bd3cd
730bdf9
 
16178c1
21dc0af
16178c1
 
 
21dc0af
16178c1
 
 
 
dec9aa7
16178c1
 
 
 
8efc195
16178c1
 
 
ad8946e
16178c1
730bdf9
 
8efc195
16178c1
730bdf9
8efc195
16178c1
 
 
 
8efc195
16178c1
 
8efc195
730bdf9
191a4f0
16178c1
 
 
 
86bd3cd
1831948
 
 
 
 
 
 
 
 
 
86bd3cd
16178c1
 
 
 
730bdf9
16178c1
 
1831948
 
 
 
16178c1
d431c9d
dec9aa7
fd4c3a4
1831948
16178c1
1831948
 
 
8efc195
16178c1
1831948
 
5565ca5
8efc195
16178c1
 
 
 
 
 
730bdf9
 
16178c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
730bdf9
 
16178c1
 
 
 
 
730bdf9
 
16178c1
730bdf9
 
 
16178c1
730bdf9
 
 
16178c1
730bdf9
 
 
16178c1
730bdf9
16178c1
 
730bdf9
16178c1
 
 
 
 
 
8efc195
86bd3cd
8efc195
5565ca5
730bdf9
 
0255b8c
 
730bdf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0255b8c
21dc0af
 
981f52f
 
21dc0af
981f52f
21dc0af
 
16178c1
21dc0af
 
 
 
 
 
 
16178c1
 
fd4c3a4
16178c1
 
 
 
 
 
 
 
 
 
 
 
981f52f
1831948
730bdf9
16178c1
 
5f8442e
 
16178c1
1831948
730bdf9
 
 
 
 
ad8946e
 
 
 
 
 
8efc195
 
 
 
 
1848c43
 
5565ca5
8efc195
5565ca5
 
 
8efc195
1848c43
730bdf9
 
 
 
ad8946e
dec9aa7
730bdf9
ad8946e
dec9aa7
86bd3cd
 
16178c1
ad8946e
1848c43
ad8946e
 
1848c43
730bdf9
1831948
ad8946e
16178c1
 
 
 
fd4c3a4
21dc0af
fd4c3a4
80b48eb
16178c1
 
 
dec9aa7
80b48eb
730bdf9
 
 
 
 
 
 
 
dec9aa7
1831948
730bdf9
 
16178c1
dec9aa7
730bdf9
 
16178c1
730bdf9
 
 
 
 
 
 
 
 
1831948
9b4ede0
1831948
730bdf9
 
 
b31f036
1848c43
730bdf9
 
981f52f
730bdf9
 
21dc0af
16178c1
 
 
730bdf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16178c1
2d26eaf
16178c1
01f0185
16178c1
 
730bdf9
16178c1
 
730bdf9
 
 
 
21dc0af
16178c1
 
730bdf9
 
 
5565ca5
 
730bdf9
16178c1
730bdf9
 
 
 
 
 
 
 
 
16178c1
 
 
 
0255b8c
16178c1
730bdf9
16178c1
 
730bdf9
0255b8c
16178c1
730bdf9
 
 
 
 
16178c1
730bdf9
 
 
 
 
16178c1
730bdf9
 
 
16178c1
 
 
730bdf9
 
16178c1
730bdf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16178c1
 
730bdf9
 
16178c1
730bdf9
 
 
 
 
 
 
 
 
16178c1
730bdf9
 
 
 
16178c1
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
import math
import os
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from facenet_pytorch import InceptionResnetV1, MTCNN
import tensorflow as tf
import mediapipe as mp
from sklearn.cluster import DBSCAN
from sklearn.preprocessing import StandardScaler, MinMaxScaler
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib.patches import Rectangle
from moviepy.editor import VideoFileClip
from PIL import Image, ImageDraw, ImageFont
import gradio as gr
import tempfile
import shutil
import time


matplotlib.rcParams['figure.dpi'] = 400
matplotlib.rcParams['savefig.dpi'] = 400

# Initialize models and other global variables
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

FIXED_FPS = 5

mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.95, 0.95, 0.95], min_face_size=80)
model = InceptionResnetV1(pretrained='vggface2').eval().to(device)

mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.8)

mp_pose = mp.solutions.pose
mp_drawing = mp.solutions.drawing_utils
pose = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.8, min_tracking_confidence=0.8)

def frame_to_timecode(frame_num, total_frames, duration):
    total_seconds = (frame_num / total_frames) * duration
    hours = int(total_seconds // 3600)
    minutes = int((total_seconds % 3600) // 60)
    seconds = int(total_seconds % 60)
    milliseconds = int((total_seconds - int(total_seconds)) * 1000)
    return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}"

def seconds_to_timecode(seconds):
    hours = int(seconds // 3600)
    minutes = int((seconds % 3600) // 60)
    seconds = int(seconds % 60)
    return f"{hours:02d}:{minutes:02d}:{seconds:02d}"

def timecode_to_seconds(timecode):
    h, m, s = map(int, timecode.split(':'))
    return h * 3600 + m * 60 + s

def get_face_embedding(face_img):
    face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255
    face_tensor = (face_tensor - 0.5) / 0.5
    face_tensor = face_tensor.to(device)
    with torch.no_grad():
        embedding = model(face_tensor)
    return embedding.cpu().numpy().flatten()

def alignFace(img):
    img_raw = img.copy()
    results = face_mesh.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
    if not results.multi_face_landmarks:
        return None
    landmarks = results.multi_face_landmarks[0].landmark
    left_eye = np.array([[landmarks[33].x, landmarks[33].y], [landmarks[160].x, landmarks[160].y],
                         [landmarks[158].x, landmarks[158].y], [landmarks[144].x, landmarks[144].y],
                         [landmarks[153].x, landmarks[153].y], [landmarks[145].x, landmarks[145].y]])
    right_eye = np.array([[landmarks[362].x, landmarks[362].y], [landmarks[385].x, landmarks[385].y],
                          [landmarks[387].x, landmarks[387].y], [landmarks[263].x, landmarks[263].y],
                          [landmarks[373].x, landmarks[373].y], [landmarks[380].x, landmarks[380].y]])
    left_eye_center = left_eye.mean(axis=0).astype(np.int32)
    right_eye_center = right_eye.mean(axis=0).astype(np.int32)
    dY = right_eye_center[1] - left_eye_center[1]
    dX = right_eye_center[0] - left_eye_center[0]
    angle = np.degrees(np.arctan2(dY, dX))
    desired_angle = 0
    angle_diff = desired_angle - angle
    height, width = img_raw.shape[:2]
    center = (width // 2, height // 2)
    rotation_matrix = cv2.getRotationMatrix2D(center, angle_diff, 1)
    new_img = cv2.warpAffine(img_raw, rotation_matrix, (width, height))
    return new_img

def calculate_posture_score(frame):
    image_height, image_width, _ = frame.shape
    results = pose.process(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))

    if not results.pose_landmarks:
        return None, None

    landmarks = results.pose_landmarks.landmark

    # Use only body landmarks
    left_shoulder = landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value]
    right_shoulder = landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value]
    left_hip = landmarks[mp_pose.PoseLandmark.LEFT_HIP.value]
    right_hip = landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value]
    left_knee = landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value]
    right_knee = landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value]

    # Calculate angles
    shoulder_angle = abs(math.degrees(math.atan2(right_shoulder.y - left_shoulder.y, right_shoulder.x - left_shoulder.x)))
    hip_angle = abs(math.degrees(math.atan2(right_hip.y - left_hip.y, right_hip.x - left_hip.x)))
    knee_angle = abs(math.degrees(math.atan2(right_knee.y - left_knee.y, right_knee.x - left_knee.x)))

    # Calculate vertical alignment
    shoulder_hip_alignment = abs((left_shoulder.y + right_shoulder.y) / 2 - (left_hip.y + right_hip.y) / 2)
    hip_knee_alignment = abs((left_hip.y + right_hip.y) / 2 - (left_knee.y + right_knee.y) / 2)
    # Add head landmarks
    nose = landmarks[mp_pose.PoseLandmark.NOSE.value]
    left_ear = landmarks[mp_pose.PoseLandmark.LEFT_EAR.value]
    right_ear = landmarks[mp_pose.PoseLandmark.RIGHT_EAR.value]
    # Calculate head tilt
    head_tilt = abs(math.degrees(math.atan2(right_ear.y - left_ear.y, right_ear.x - left_ear.x)))
    # Calculate head position relative to shoulders
    head_position = abs((nose.y - (left_shoulder.y + right_shoulder.y) / 2) /
                        ((left_shoulder.y + right_shoulder.y) / 2 - (left_hip.y + right_hip.y) / 2))

    # Combine metrics into a single posture score (you may need to adjust these weights)
    posture_score = (
        (1 - abs(shoulder_angle - hip_angle) / 90) * 0.3 +
        (1 - abs(hip_angle - knee_angle) / 90) * 0.2 +
        (1 - shoulder_hip_alignment) * 0.1 +
        (1 - hip_knee_alignment) * 0.1 +
        (1 - abs(head_tilt - 90) / 90) * 0.15 +
        (1 - head_position) * 0.15
    )

    return posture_score, results.pose_landmarks

def extract_frames(video_path, output_folder, desired_fps, progress_callback=None):
    os.makedirs(output_folder, exist_ok=True)
    clip = VideoFileClip(video_path)
    original_fps = clip.fps
    duration = clip.duration
    total_frames = int(duration * original_fps)
    step = max(1, original_fps / desired_fps)
    total_frames_to_extract = int(total_frames / step)

    frame_count = 0
    for t in np.arange(0, duration, step / original_fps):
        frame = clip.get_frame(t)
        img = Image.fromarray(frame)
        img.save(os.path.join(output_folder, f"frame_{frame_count:04d}.jpg"))
        frame_count += 1
        if progress_callback:
            progress = min(100, (frame_count / total_frames_to_extract) * 100)
            progress_callback(progress, f"Extracting frame")
        if frame_count >= total_frames_to_extract:
            break
    clip.close()
    return frame_count, original_fps

def is_frontal_face(landmarks, threshold=40):
    nose_tip = landmarks[4]
    left_chin = landmarks[234]
    right_chin = landmarks[454]
    nose_to_left = [left_chin.x - nose_tip.x, left_chin.y - nose_tip.y]
    nose_to_right = [right_chin.x - nose_tip.x, right_chin.y - nose_tip.y]
    dot_product = nose_to_left[0] * nose_to_right[0] + nose_to_left[1] * nose_to_right[1]
    magnitude_left = math.sqrt(nose_to_left[0] ** 2 + nose_to_left[1] ** 2)
    magnitude_right = math.sqrt(nose_to_right[0] ** 2 + nose_to_right[1] ** 2)
    cos_angle = dot_product / (magnitude_left * magnitude_right)
    angle = math.acos(cos_angle)
    angle_degrees = math.degrees(angle)
    return abs(180 - angle_degrees) < threshold


def process_frames(frames_folder, aligned_faces_folder, frame_count, progress, batch_size):
    embeddings_by_frame = {}
    emotions_by_frame = {}
    posture_scores_by_frame = {}
    posture_landmarks_by_frame = {}
    aligned_face_paths = []
    frame_files = sorted([f for f in os.listdir(frames_folder) if f.endswith('.jpg')])

    for i in range(0, len(frame_files), batch_size):
        batch_files = frame_files[i:i + batch_size]
        batch_frames = []
        batch_nums = []

        for frame_file in batch_files:
            frame_num = int(frame_file.split('_')[1].split('.')[0])
            frame_path = os.path.join(frames_folder, frame_file)
            frame = cv2.imread(frame_path)
            if frame is not None:
                batch_frames.append(frame)
                batch_nums.append(frame_num)

        if batch_frames:
            batch_boxes, batch_probs = mtcnn.detect(batch_frames)

            for j, (frame, frame_num, boxes, probs) in enumerate(
                    zip(batch_frames, batch_nums, batch_boxes, batch_probs)):

                # Calculate posture score for the full frame
                posture_score, posture_landmarks = calculate_posture_score(frame)
                posture_scores_by_frame[frame_num] = posture_score
                posture_landmarks_by_frame[frame_num] = posture_landmarks

                if boxes is not None and len(boxes) > 0 and probs[0] >= 0.99:
                    x1, y1, x2, y2 = [int(b) for b in boxes[0]]
                    face = frame[y1:y2, x1:x2]
                    if face.size > 0:
                        results = face_mesh.process(cv2.cvtColor(face, cv2.COLOR_BGR2RGB))
                        if results.multi_face_landmarks and is_frontal_face(results.multi_face_landmarks[0].landmark):

                            #aligned_face = alignFace(face)
                            aligned_face = face

                            if aligned_face is not None:
                                aligned_face_resized = cv2.resize(aligned_face, (160, 160))
                                output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
                                cv2.imwrite(output_path, aligned_face_resized)
                                aligned_face_paths.append(output_path)
                                embedding = get_face_embedding(aligned_face_resized)
                                embeddings_by_frame[frame_num] = embedding

        progress((i + len(batch_files)) / len(frame_files),
                 f"Processing frames {i + 1} to {min(i + len(batch_files), len(frame_files))} of {len(frame_files)}")

    return embeddings_by_frame, posture_scores_by_frame, posture_landmarks_by_frame, aligned_face_paths


def cluster_faces(embeddings):
    if len(embeddings) < 2:
        print("Not enough faces for clustering. Assigning all to one cluster.")
        return np.zeros(len(embeddings), dtype=int)

    X = np.stack(embeddings)
    dbscan = DBSCAN(eps=0.5, min_samples=5, metric='cosine')
    clusters = dbscan.fit_predict(X)

    if np.all(clusters == -1):
        print("DBSCAN assigned all to noise. Considering as one cluster.")
        return np.zeros(len(embeddings), dtype=int)

    return clusters

def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder):
    for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters):
        person_folder = os.path.join(organized_faces_folder, f"person_{cluster}")
        os.makedirs(person_folder, exist_ok=True)
        src = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
        dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg")
        shutil.copy(src, dst)

def save_person_data_to_csv(embeddings_by_frame, clusters, desired_fps, original_fps, output_folder, video_duration):
    person_data = {}

    for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters):
        if cluster not in person_data:
            person_data[cluster] = []
        person_data[cluster].append((frame_num, embedding))

    largest_cluster = max(person_data, key=lambda k: len(person_data[k]))

    data = person_data[largest_cluster]
    data.sort(key=lambda x: x[0])
    frames, embeddings = zip(*data)

    embeddings_array = np.array(embeddings)
    np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array)

    total_frames = max(frames)
    timecodes = [frame_to_timecode(frame, total_frames, video_duration) for frame in frames]

    df_data = {
        'Frame': frames,
        'Timecode': timecodes,
        'Embedding_Index': range(len(embeddings))
    }

    for i in range(len(embeddings[0])):
        df_data[f'Raw_Embedding_{i}'] = [embedding[i] for embedding in embeddings]

    df = pd.DataFrame(df_data)

    return df, largest_cluster

class Autoencoder(nn.Module):
    def __init__(self, input_size):
        super(Autoencoder, self).__init__()
        self.encoder = nn.Sequential(
            nn.Linear(input_size, 256),
            nn.ReLU(),
            nn.Linear(256, 128),
            nn.ReLU(),
            nn.Linear(128, 64),
            nn.ReLU(),
            nn.Linear(64, 32)
        )
        self.decoder = nn.Sequential(
            nn.Linear(32, 64),
            nn.ReLU(),
            nn.Linear(64, 128),
            nn.ReLU(),
            nn.Linear(128, 256),
            nn.ReLU(),
            nn.Linear(256, input_size)
        )

    def forward(self, x):
        batch_size, seq_len, _ = x.size()
        x = x.view(batch_size * seq_len, -1)
        encoded = self.encoder(x)
        decoded = self.decoder(encoded)
        return decoded.view(batch_size, seq_len, -1)

def determine_anomalies(mse_values, threshold):
    mean = np.mean(mse_values)
    std = np.std(mse_values)
    anomalies = mse_values > (mean + threshold * std)
    return anomalies

def anomaly_detection(X_embeddings, X_posture, epochs=200, batch_size=8, patience=5):
    # Normalize posture
    scaler_posture = MinMaxScaler()
    X_posture_scaled = scaler_posture.fit_transform(X_posture.reshape(-1, 1))

    # Process facial embeddings
    X_embeddings = torch.FloatTensor(X_embeddings).to(device)
    if X_embeddings.dim() == 2:
        X_embeddings = X_embeddings.unsqueeze(0)

    # Process posture
    X_posture_scaled = torch.FloatTensor(X_posture_scaled).to(device)
    if X_posture_scaled.dim() == 2:
        X_posture_scaled = X_posture_scaled.unsqueeze(0)

    model_embeddings = Autoencoder(input_size=X_embeddings.shape[2]).to(device)
    model_posture = Autoencoder(input_size=X_posture_scaled.shape[2]).to(device)

    criterion = nn.MSELoss()
    optimizer_embeddings = optim.Adam(model_embeddings.parameters())
    optimizer_posture = optim.Adam(model_posture.parameters())

    # Train models
    for epoch in range(epochs):
        for model, optimizer, X in [(model_embeddings, optimizer_embeddings, X_embeddings),
                                    (model_posture, optimizer_posture, X_posture_scaled)]:
            model.train()
            optimizer.zero_grad()
            output = model(X)
            loss = criterion(output, X)
            loss.backward()
            optimizer.step()

    # Compute MSE for embeddings and posture
    model_embeddings.eval()
    model_posture.eval()
    with torch.no_grad():
        reconstructed_embeddings = model_embeddings(X_embeddings).cpu().numpy()
        reconstructed_posture = model_posture(X_posture_scaled).cpu().numpy()

        mse_embeddings = np.mean(np.power(X_embeddings.cpu().numpy() - reconstructed_embeddings, 2), axis=2).squeeze()
        mse_posture = np.mean(np.power(X_posture_scaled.cpu().numpy() - reconstructed_posture, 2), axis=2).squeeze()

    return mse_embeddings, mse_posture

def plot_mse(df, mse_values, title, color='navy', time_threshold=3, anomaly_threshold=4):
    plt.figure(figsize=(16, 8), dpi=400)
    fig, ax = plt.subplots(figsize=(16, 8))

    if 'Seconds' not in df.columns:
        df['Seconds'] = df['Timecode'].apply(
            lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))

    # Ensure df and mse_values have the same length and remove NaN values
    min_length = min(len(df), len(mse_values))
    df = df.iloc[:min_length]
    mse_values = mse_values[:min_length]

    # Remove NaN values
    mask = ~np.isnan(mse_values)
    df = df[mask]
    mse_values = mse_values[mask]

    mean = pd.Series(mse_values).rolling(window=10).mean()
    std = pd.Series(mse_values).rolling(window=10).std()
    median = np.median(mse_values)

    ax.scatter(df['Seconds'], mse_values, color=color, alpha=0.3, s=5)
    ax.plot(df['Seconds'], mean, color=color, linewidth=0.5)
    ax.fill_between(df['Seconds'], mean - std, mean + std, color=color, alpha=0.1)

    # Add median line
    ax.axhline(y=median, color='black', linestyle='--', label='Median Baseline')

    # Add threshold line
    threshold = np.mean(mse_values) + anomaly_threshold * np.std(mse_values)
    ax.axhline(y=threshold, color='red', linestyle='--', label=f'Threshold: {anomaly_threshold:.1f}')
    ax.text(ax.get_xlim()[1], threshold, f'Threshold: {anomaly_threshold:.1f}', verticalalignment='center', horizontalalignment='left', color='red')

    anomalies = determine_anomalies(mse_values, anomaly_threshold)
    anomaly_frames = df['Frame'].iloc[anomalies].tolist()

    ax.scatter(df['Seconds'].iloc[anomalies], mse_values[anomalies], color='red', s=20, zorder=5)

    anomaly_data = list(zip(df['Timecode'].iloc[anomalies],
                            df['Seconds'].iloc[anomalies],
                            mse_values[anomalies]))
    anomaly_data.sort(key=lambda x: x[1])

    grouped_anomalies = []
    current_group = []
    for timecode, sec, mse in anomaly_data:
        if not current_group or sec - current_group[-1][1] <= time_threshold:
            current_group.append((timecode, sec, mse))
        else:
            grouped_anomalies.append(current_group)
            current_group = [(timecode, sec, mse)]
    if current_group:
        grouped_anomalies.append(current_group)

    for group in grouped_anomalies:
        start_sec = group[0][1]
        end_sec = group[-1][1]
        rect = Rectangle((start_sec, ax.get_ylim()[0]), end_sec - start_sec, ax.get_ylim()[1] - ax.get_ylim()[0],
                         facecolor='red', alpha=0.2, zorder=1)
        ax.add_patch(rect)

    for group in grouped_anomalies:
        highest_mse_anomaly = max(group, key=lambda x: x[2])
        timecode, sec, mse = highest_mse_anomaly
        ax.annotate(timecode, (sec, mse), textcoords="offset points", xytext=(0, 10),
                    ha='center', fontsize=6, color='red')

    max_seconds = df['Seconds'].max()
    num_ticks = 100
    tick_locations = np.linspace(0, max_seconds, num_ticks)
    tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]

    ax.set_xticks(tick_locations)
    ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)

    ax.set_xlabel('Timecode')
    ax.set_ylabel('Mean Squared Error')
    ax.set_title(title)

    ax.grid(True, linestyle='--', alpha=0.7)
    ax.legend()
    plt.tight_layout()
    plt.close()
    return fig, anomaly_frames

def plot_mse_histogram(mse_values, title, anomaly_threshold, color='blue'):
    plt.figure(figsize=(16, 4), dpi=400)
    fig, ax = plt.subplots(figsize=(16, 4))

    ax.hist(mse_values, bins=100, edgecolor='black', color=color, alpha=0.7)
    ax.set_xlabel('Mean Squared Error')
    ax.set_ylabel('Number of Samples')
    ax.set_title(title)

    mean = np.mean(mse_values)
    std = np.std(mse_values)
    threshold = mean + anomaly_threshold * std

    ax.axvline(x=threshold, color='red', linestyle='--', linewidth=2)

    # Move annotation to the bottom and away from the line
    ax.annotate(f'Threshold: {anomaly_threshold:.1f}',
                xy=(threshold, ax.get_ylim()[0]),
                xytext=(0, -20),
                textcoords='offset points',
                ha='center', va='top',
                bbox=dict(boxstyle='round,pad=0.5', fc='white', ec='none', alpha=0.7),
                color='red')

    plt.tight_layout()
    plt.close()
    return fig


def plot_posture(df, posture_scores, color='blue', anomaly_threshold=4):
    plt.figure(figsize=(16, 8), dpi=400)
    fig, ax = plt.subplots(figsize=(16, 8))

    df['Seconds'] = df['Timecode'].apply(
        lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))

    posture_data = [(frame, score) for frame, score in posture_scores.items() if score is not None]
    posture_frames, posture_scores = zip(*posture_data)

    # Create a new dataframe for posture data
    posture_df = pd.DataFrame({'Frame': posture_frames, 'Score': posture_scores})
    posture_df = posture_df.merge(df[['Frame', 'Seconds']], on='Frame', how='inner')

    ax.scatter(posture_df['Seconds'], posture_df['Score'], color=color, alpha=0.3, s=5)
    mean = posture_df['Score'].rolling(window=10).mean()
    ax.plot(posture_df['Seconds'], mean, color=color, linewidth=0.5)

    ax.set_xlabel('Timecode')
    ax.set_ylabel('Posture Score')
    ax.set_title("Body Posture Over Time")

    ax.grid(True, linestyle='--', alpha=0.7)

    max_seconds = df['Seconds'].max()
    num_ticks = 80
    tick_locations = np.linspace(0, max_seconds, num_ticks)
    tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]

    ax.set_xticks(tick_locations)
    ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)

    plt.tight_layout()
    plt.close()
    return fig


def plot_mse_heatmap(mse_values, title, df):
    plt.figure(figsize=(20, 5), dpi=400)
    fig, ax = plt.subplots(figsize=(20, 5))

    # Reshape MSE values to 2D array for heatmap
    mse_2d = mse_values.reshape(1, -1)

    # Create heatmap
    sns.heatmap(mse_2d, cmap='YlOrRd', cbar_kws={'label': 'MSE'}, ax=ax)

    # Set x-axis ticks to timecodes
    num_ticks = 60
    tick_locations = np.linspace(0, len(mse_values) - 1, num_ticks).astype(int)
    tick_labels = [df['Timecode'].iloc[i] for i in tick_locations]

    ax.set_xticks(tick_locations)
    ax.set_xticklabels(tick_labels, rotation=90, ha='center', va='top')  # Adjusted rotation and alignment

    ax.set_title(title)

    # Remove y-axis labels
    ax.set_yticks([])

    plt.tight_layout()  # Ensure all elements fit within the figure
    plt.close()
    return fig

def draw_pose_landmarks(frame, landmarks):
    annotated_frame = frame.copy()
    # Include relevant landmarks for head position and body
    body_landmarks = [
        mp_pose.PoseLandmark.NOSE,
        mp_pose.PoseLandmark.LEFT_SHOULDER,
        mp_pose.PoseLandmark.RIGHT_SHOULDER,
        mp_pose.PoseLandmark.LEFT_EAR,
        mp_pose.PoseLandmark.RIGHT_EAR,
        mp_pose.PoseLandmark.LEFT_ELBOW,
        mp_pose.PoseLandmark.RIGHT_ELBOW,
        mp_pose.PoseLandmark.LEFT_WRIST,
        mp_pose.PoseLandmark.RIGHT_WRIST,
        mp_pose.PoseLandmark.LEFT_HIP,
        mp_pose.PoseLandmark.RIGHT_HIP,
        mp_pose.PoseLandmark.LEFT_KNEE,
        mp_pose.PoseLandmark.RIGHT_KNEE,
        mp_pose.PoseLandmark.LEFT_ANKLE,
        mp_pose.PoseLandmark.RIGHT_ANKLE
    ]

    # Connections for head position and body
    body_connections = [
        (mp_pose.PoseLandmark.LEFT_EAR, mp_pose.PoseLandmark.LEFT_SHOULDER),
        (mp_pose.PoseLandmark.RIGHT_EAR, mp_pose.PoseLandmark.RIGHT_SHOULDER),
        (mp_pose.PoseLandmark.NOSE, mp_pose.PoseLandmark.LEFT_SHOULDER),
        (mp_pose.PoseLandmark.NOSE, mp_pose.PoseLandmark.RIGHT_SHOULDER),
        (mp_pose.PoseLandmark.LEFT_SHOULDER, mp_pose.PoseLandmark.RIGHT_SHOULDER),
        (mp_pose.PoseLandmark.LEFT_SHOULDER, mp_pose.PoseLandmark.LEFT_ELBOW),
        (mp_pose.PoseLandmark.RIGHT_SHOULDER, mp_pose.PoseLandmark.RIGHT_ELBOW),
        (mp_pose.PoseLandmark.LEFT_ELBOW, mp_pose.PoseLandmark.LEFT_WRIST),
        (mp_pose.PoseLandmark.RIGHT_ELBOW, mp_pose.PoseLandmark.RIGHT_WRIST),
        (mp_pose.PoseLandmark.LEFT_SHOULDER, mp_pose.PoseLandmark.LEFT_HIP),
        (mp_pose.PoseLandmark.RIGHT_SHOULDER, mp_pose.PoseLandmark.RIGHT_HIP),
        (mp_pose.PoseLandmark.LEFT_HIP, mp_pose.PoseLandmark.RIGHT_HIP),
        (mp_pose.PoseLandmark.LEFT_HIP, mp_pose.PoseLandmark.LEFT_KNEE),
        (mp_pose.PoseLandmark.RIGHT_HIP, mp_pose.PoseLandmark.RIGHT_KNEE),
        (mp_pose.PoseLandmark.LEFT_KNEE, mp_pose.PoseLandmark.LEFT_ANKLE),
        (mp_pose.PoseLandmark.RIGHT_KNEE, mp_pose.PoseLandmark.RIGHT_ANKLE)
    ]

    # Draw landmarks
    for landmark in body_landmarks:
        if landmark in landmarks.landmark:
            lm = landmarks.landmark[landmark]
            h, w, _ = annotated_frame.shape
            cx, cy = int(lm.x * w), int(lm.y * h)
            cv2.circle(annotated_frame, (cx, cy), 5, (245, 117, 66), -1)

    # Draw connections
    for connection in body_connections:
        start_lm = landmarks.landmark[connection[0]]
        end_lm = landmarks.landmark[connection[1]]
        h, w, _ = annotated_frame.shape
        start_point = (int(start_lm.x * w), int(start_lm.y * h))
        end_point = (int(end_lm.x * w), int(end_lm.y * h))
        cv2.line(annotated_frame, start_point, end_point, (245, 66, 230), 2)

    # Highlight head tilt
    left_ear = landmarks.landmark[mp_pose.PoseLandmark.LEFT_EAR]
    right_ear = landmarks.landmark[mp_pose.PoseLandmark.RIGHT_EAR]
    nose = landmarks.landmark[mp_pose.PoseLandmark.NOSE]

    h, w, _ = annotated_frame.shape
    left_ear_point = (int(left_ear.x * w), int(left_ear.y * h))
    right_ear_point = (int(right_ear.x * w), int(right_ear.y * h))
    nose_point = (int(nose.x * w), int(nose.y * h))

    # Draw a line between ears to show head tilt
    cv2.line(annotated_frame, left_ear_point, right_ear_point, (0, 255, 0), 2)

    # Draw a line from nose to the midpoint between shoulders to show head forward/backward tilt
    left_shoulder = landmarks.landmark[mp_pose.PoseLandmark.LEFT_SHOULDER]
    right_shoulder = landmarks.landmark[mp_pose.PoseLandmark.RIGHT_SHOULDER]
    shoulder_mid_x = (left_shoulder.x + right_shoulder.x) / 2
    shoulder_mid_y = (left_shoulder.y + right_shoulder.y) / 2
    shoulder_mid_point = (int(shoulder_mid_x * w), int(shoulder_mid_y * h))
    cv2.line(annotated_frame, nose_point, shoulder_mid_point, (0, 255, 0), 2)

    return annotated_frame

def get_all_face_samples(organized_faces_folder, output_folder, largest_cluster, max_samples=500):
    face_samples = {"most_frequent": [], "others": []}
    for cluster_folder in sorted(os.listdir(organized_faces_folder)):
        if cluster_folder.startswith("person_"):
            person_folder = os.path.join(organized_faces_folder, cluster_folder)
            face_files = sorted([f for f in os.listdir(person_folder) if f.endswith('.jpg')])
            if face_files:
                cluster_id = int(cluster_folder.split('_')[1])
                if cluster_id == largest_cluster:
                    for i, sample in enumerate(face_files[:max_samples]):
                        face_path = os.path.join(person_folder, sample)
                        output_path = os.path.join(output_folder, f"face_sample_most_frequent_{i:04d}.jpg")
                        face_img = cv2.imread(face_path)
                        if face_img is not None:
                            small_face = cv2.resize(face_img, (160, 160))
                            cv2.imwrite(output_path, small_face)
                            face_samples["most_frequent"].append(output_path)
                        if len(face_samples["most_frequent"]) >= max_samples:
                            break
                else:
                    remaining_samples = max_samples - len(face_samples["others"])
                    if remaining_samples > 0:
                        for i, sample in enumerate(face_files[:remaining_samples]):
                            face_path = os.path.join(person_folder, sample)
                            output_path = os.path.join(output_folder, f"face_sample_other_{cluster_id:02d}_{i:04d}.jpg")
                            face_img = cv2.imread(face_path)
                            if face_img is not None:
                                small_face = cv2.resize(face_img, (160, 160))
                                cv2.imwrite(output_path, small_face)
                                face_samples["others"].append(output_path)
                            if len(face_samples["others"]) >= max_samples:
                                break
    return face_samples


def process_video(video_path, anomaly_threshold, desired_fps, progress=gr.Progress()):
    start_time = time.time()
    output_folder = "output"
    os.makedirs(output_folder, exist_ok=True)
    batch_size = 16

    GRAPH_COLORS = {
        'facial_embeddings': 'navy',
        'body_posture': 'purple'
    }

    with tempfile.TemporaryDirectory() as temp_dir:
        aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces')
        organized_faces_folder = os.path.join(temp_dir, 'organized_faces')
        os.makedirs(aligned_faces_folder, exist_ok=True)
        os.makedirs(organized_faces_folder, exist_ok=True)

        clip = VideoFileClip(video_path)
        video_duration = clip.duration
        clip.close()

        progress(0, "Starting frame extraction")
        frames_folder = os.path.join(temp_dir, 'extracted_frames')

        def extraction_progress(percent, message):
            progress(percent / 100, f"Extracting frames")

        frame_count, original_fps = extract_frames(video_path, frames_folder, desired_fps, extraction_progress)

        progress(1, "Frame extraction complete")
        progress(0.3, "Processing frames")
        embeddings_by_frame, posture_scores_by_frame, posture_landmarks_by_frame, aligned_face_paths = process_frames(
            frames_folder, aligned_faces_folder,
            frame_count,
            progress, batch_size)

        if not aligned_face_paths:
            raise ValueError("No faces were extracted from the video.")

        progress(0.6, "Clustering faces")
        embeddings = [embedding for _, embedding in embeddings_by_frame.items()]
        clusters = cluster_faces(embeddings)
        num_clusters = len(set(clusters))

        progress(0.7, "Organizing faces")
        organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder)

        progress(0.8, "Saving person data")
        df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, clusters, desired_fps,
                                                      original_fps, temp_dir, video_duration)

        # Add 'Seconds' column to df
        df['Seconds'] = df['Timecode'].apply(
            lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))

        progress(0.85, "Getting face samples")
        face_samples = get_all_face_samples(organized_faces_folder, output_folder, largest_cluster)

        progress(0.9, "Performing anomaly detection")
        embedding_columns = [col for col in df.columns if col.startswith('Raw_Embedding_')]

        X_embeddings = df[embedding_columns].values

        try:
            X_posture = np.array([posture_scores_by_frame.get(frame, None) for frame in df['Frame']])
            X_posture = X_posture[X_posture != None].reshape(-1, 1)  # Remove None values and reshape

            # Ensure X_posture is not empty
            if len(X_posture) == 0:
                raise ValueError("No valid posture data found")

            mse_embeddings, mse_posture = anomaly_detection(X_embeddings, X_posture, batch_size=batch_size)

            progress(0.95, "Generating plots")
            mse_plot_embeddings, anomaly_frames_embeddings = plot_mse(df, mse_embeddings, "Facial Features",
                                                                      color=GRAPH_COLORS['facial_embeddings'],
                                                                      anomaly_threshold=anomaly_threshold)

            mse_histogram_embeddings = plot_mse_histogram(mse_embeddings, "MSE Distribution: Facial Features",
                                                          anomaly_threshold, color=GRAPH_COLORS['facial_embeddings'])

            mse_plot_posture, anomaly_frames_posture = plot_mse(df, mse_posture, "Body Posture",
                                                                color=GRAPH_COLORS['body_posture'],
                                                                anomaly_threshold=anomaly_threshold)

            mse_histogram_posture = plot_mse_histogram(mse_posture, "MSE Distribution: Body Posture",
                                                       anomaly_threshold, color=GRAPH_COLORS['body_posture'])

            mse_heatmap_embeddings = plot_mse_heatmap(mse_embeddings, "Facial Features MSE Heatmap", df)
            mse_heatmap_posture = plot_mse_heatmap(mse_posture, "Body Posture MSE Heatmap", df)

        except Exception as e:
            print(f"Error details: {str(e)}")
            import traceback
            traceback.print_exc()
            return (f"Error in video processing: {str(e)}",) + (None,) * 14

        progress(1.0, "Preparing results")
        results = f"Number of persons detected: {num_clusters}\n\n"
        results += "Breakdown:\n"
        for cluster_id in range(num_clusters):
            face_count = len([c for c in clusters if c == cluster_id])
            results += f"Person {cluster_id + 1}: {face_count} face frames\n"

        end_time = time.time()
        execution_time = end_time - start_time

        def add_timecode_to_image(image, timecode):
            img_pil = Image.fromarray(image)
            draw = ImageDraw.Draw(img_pil)
            font = ImageFont.truetype("arial.ttf", 15)
            draw.text((10, 10), timecode, (255, 0, 0), font=font)
            return np.array(img_pil)

        # In the process_video function, update the anomaly frame processing:
        anomaly_faces_embeddings = []
        for frame in anomaly_frames_embeddings:
            face_path = os.path.join(aligned_faces_folder, f"frame_{frame}_face.jpg")
            if os.path.exists(face_path):
                face_img = cv2.imread(face_path)
                if face_img is not None:
                    face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)
                    timecode = df[df['Frame'] == frame]['Timecode'].iloc[0]
                    face_img_with_timecode = add_timecode_to_image(face_img, timecode)
                    anomaly_faces_embeddings.append(face_img_with_timecode)

        anomaly_frames_posture_images = []
        for frame in anomaly_frames_posture:
            frame_path = os.path.join(frames_folder, f"frame_{frame:04d}.jpg")
            if os.path.exists(frame_path):
                frame_img = cv2.imread(frame_path)
                if frame_img is not None:
                    frame_img = cv2.cvtColor(frame_img, cv2.COLOR_BGR2RGB)
                    pose_results = pose.process(frame_img)
                    if pose_results.pose_landmarks:
                        frame_img = draw_pose_landmarks(frame_img, pose_results.pose_landmarks)
                    timecode = df[df['Frame'] == frame]['Timecode'].iloc[0]
                    frame_img_with_timecode = add_timecode_to_image(frame_img, timecode)
                    anomaly_frames_posture_images.append(frame_img_with_timecode)

        return (
            execution_time,
            results,
            df,
            mse_embeddings,
            mse_posture,
            mse_plot_embeddings,
            mse_histogram_embeddings,
            mse_plot_posture,
            mse_histogram_posture,
            mse_heatmap_embeddings,
            mse_heatmap_posture,
            face_samples["most_frequent"],
            face_samples["others"],
            anomaly_faces_embeddings,
            anomaly_frames_posture_images,
            aligned_faces_folder,
            frames_folder
        )


with gr.Blocks() as iface:
    gr.Markdown("""
    # Facial Expression and Body Language Anomaly Detection

    This application analyzes videos to detect anomalies in facial features and body language. 
    It processes the video frames to extract facial embeddings and body posture, 
    then uses machine learning techniques to identify unusual patterns or deviations from the norm.

    For more information, visit: [https://github.com/reab5555/Facial-Expression-Anomaly-Detection](https://github.com/reab5555/Facial-Expression-Anomaly-Detection)
    """)

    with gr.Row():
        video_input = gr.Video()

    anomaly_threshold = gr.Slider(minimum=1, maximum=5, step=0.1, value=3, label="Anomaly Detection Threshold")
    process_btn = gr.Button("Process Video")
    progress_bar = gr.Progress()
    execution_time = gr.Number(label="Execution Time (seconds)")

    with gr.Group(visible=False) as results_group:
        results_text = gr.TextArea(label="Anomaly Detection Results", lines=4)

        with gr.Tab("Facial Features"):
            mse_features_plot = gr.Plot(label="MSE: Facial Features")
            mse_features_hist = gr.Plot(label="MSE Distribution: Facial Features")
            mse_features_heatmap = gr.Plot(label="MSE Heatmap: Facial Features")
            anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2, height="auto")

        with gr.Tab("Body Posture"):
            mse_posture_plot = gr.Plot(label="MSE: Body Posture")
            mse_posture_hist = gr.Plot(label="MSE Distribution: Body Posture")
            mse_posture_heatmap = gr.Plot(label="MSE Heatmap: Body Posture")
            anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, height="auto")

        with gr.Tab("Face Samples"):
            face_samples_most_frequent = gr.Gallery(label="Most Frequent Person Samples (Target)", columns=6, rows=2, height="auto")
            face_samples_others = gr.Gallery(label="Other Persons Samples", columns=6, rows=1, height="auto")

    # Hidden components to store intermediate results
    df_store = gr.State()
    mse_features_store = gr.State()
    mse_posture_store = gr.State()
    aligned_faces_folder_store = gr.State()
    frames_folder_store = gr.State()
    mse_heatmap_embeddings_store = gr.State()
    mse_heatmap_posture_store = gr.State()

    def process_and_show_completion(video_input_path, anomaly_threshold_input):
        try:
            print("Starting video processing...")
            results = process_video(video_input_path, anomaly_threshold_input, FIXED_FPS, progress=progress_bar)
            print("Video processing completed.")

            if isinstance(results[0], str) and results[0].startswith("Error"):
                print(f"Error occurred: {results[0]}")
                return [results[0]] + [None] * 18  # Update this line to match the number of outputs

            exec_time, results_summary, df, mse_embeddings, mse_posture, \
                mse_plot_embeddings, mse_histogram_embeddings, \
                mse_plot_posture, mse_histogram_posture, \
                mse_heatmap_embeddings, mse_heatmap_posture, \
                face_samples_frequent, face_samples_other, \
                anomaly_faces_embeddings, anomaly_frames_posture_images, \
                aligned_faces_folder, frames_folder = results

            # Convert numpy arrays to PIL Images for the galleries
            anomaly_faces_embeddings_pil = [Image.fromarray(face) for face in anomaly_faces_embeddings]
            anomaly_frames_posture_pil = [Image.fromarray(frame) for frame in anomaly_frames_posture_images]

            # Ensure face samples are in the correct format for Gradio
            face_samples_frequent = [Image.open(path) for path in face_samples_frequent]
            face_samples_other = [Image.open(path) for path in face_samples_other]

            output = [
                exec_time, results_summary,
                df, mse_embeddings, mse_posture,
                mse_plot_embeddings, mse_plot_posture,
                mse_histogram_embeddings, mse_histogram_posture,
                mse_heatmap_embeddings, mse_heatmap_posture,
                anomaly_faces_embeddings_pil, anomaly_frames_posture_pil,
                face_samples_frequent, face_samples_other,
                aligned_faces_folder, frames_folder,
                mse_embeddings, mse_posture
            ]

            return output

        except Exception as e:
            error_message = f"An error occurred: {str(e)}"
            print(error_message)
            import traceback
            traceback.print_exc()
            return [error_message] + [None] * 18

    process_btn.click(
        process_and_show_completion,
        inputs=[video_input, anomaly_threshold],
        outputs=[
            execution_time, results_text, df_store,
            mse_features_store, mse_posture_store,
            mse_features_plot, mse_posture_plot,
            mse_features_hist, mse_posture_hist,
            mse_features_heatmap, mse_posture_heatmap,
            anomaly_frames_features, anomaly_frames_posture,
            face_samples_most_frequent, face_samples_others,
            aligned_faces_folder_store, frames_folder_store,
            mse_heatmap_embeddings_store, mse_heatmap_posture_store
        ]
    ).then(
        lambda: gr.Group(visible=True),
        inputs=None,
        outputs=[results_group]
    )

if __name__ == "__main__":
    iface.launch()