reab5555 commited on
Commit
ee400a8
·
verified ·
1 Parent(s): 1831948

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -29
app.py CHANGED
@@ -4,14 +4,11 @@ import numpy as np
4
  import torch
5
  import torch.nn as nn
6
  import torch.optim as optim
7
- import seaborn as sns
8
  from facenet_pytorch import InceptionResnetV1, MTCNN
9
  import mediapipe as mp
10
  from fer import FER
11
- from scipy import interpolate
12
- from sklearn.cluster import DBSCAN, KMeans
13
- from sklearn.preprocessing import StandardScaler, MinMaxScaler
14
- from sklearn.metrics import silhouette_score
15
  from sklearn.decomposition import PCA
16
  import umap
17
  import pandas as pd
@@ -22,24 +19,18 @@ from PIL import Image
22
  import gradio as gr
23
  import tempfile
24
  import shutil
25
- import io
26
 
27
- # Suppress TensorFlow warnings
28
- os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
29
- import tensorflow as tf
30
-
31
- tf.get_logger().setLevel('ERROR')
32
 
33
  matplotlib.rcParams['figure.dpi'] = 400
34
  matplotlib.rcParams['savefig.dpi'] = 400
35
 
36
  # Initialize models and other global variables
37
- device = 'cuda' if torch.cuda.is_available() else 'cpu'
38
 
39
- mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.975, 0.975, 0.975], min_face_size=100)
40
  model = InceptionResnetV1(pretrained='vggface2').eval().to(device)
41
  mp_face_mesh = mp.solutions.face_mesh
42
- face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.5)
43
  emotion_detector = FER(mtcnn=False)
44
 
45
 
@@ -188,7 +179,7 @@ def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder
188
  shutil.copy(src, dst)
189
 
190
 
191
- def find_optimal_components(embeddings, max_components=10):
192
  pca = PCA(n_components=max_components)
193
  pca.fit(embeddings)
194
 
@@ -269,7 +260,7 @@ def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, de
269
 
270
 
271
  class LSTMAutoencoder(nn.Module):
272
- def __init__(self, input_size, hidden_size=64, num_layers=2):
273
  super(LSTMAutoencoder, self).__init__()
274
  self.input_size = input_size
275
  self.hidden_size = hidden_size
@@ -283,8 +274,8 @@ class LSTMAutoencoder(nn.Module):
283
  return out
284
 
285
 
286
- def lstm_anomaly_detection(X, feature_columns, raw_embedding_columns, epochs=100, batch_size=64):
287
- device = 'cuda' if torch.cuda.is_available() else 'cpu'
288
  X = torch.FloatTensor(X).to(device)
289
  if X.dim() == 2:
290
  X = X.unsqueeze(0)
@@ -328,8 +319,8 @@ def lstm_anomaly_detection(X, feature_columns, raw_embedding_columns, epochs=100
328
 
329
  return mse_all, mse_comp, mse_raw
330
 
331
- def embedding_anomaly_detection(embeddings, epochs=100, batch_size=64):
332
- device = 'cuda' if torch.cuda.is_available() else 'cpu'
333
  X = torch.FloatTensor(embeddings).to(device)
334
  if X.dim() == 2:
335
  X = X.unsqueeze(0)
@@ -355,14 +346,14 @@ def embedding_anomaly_detection(embeddings, epochs=100, batch_size=64):
355
  mse = np.mean(np.power(X.squeeze(0).cpu().numpy() - reconstructed, 2), axis=1)
356
  return mse
357
 
358
- def determine_anomalies(mse_values, threshold=3.5):
359
  mean = np.mean(mse_values)
360
  std = np.std(mse_values)
361
  anomalies = mse_values > (mean + threshold * std)
362
  return anomalies
363
 
364
 
365
- def plot_mse(df, mse_values, title, color='blue', time_threshold=1, hide_first_n=3):
366
  plt.figure(figsize=(16, 8), dpi=300)
367
  fig, ax = plt.subplots(figsize=(16, 8))
368
 
@@ -520,13 +511,13 @@ def process_video(video_path, desired_fps, batch_size, progress=gr.Progress()):
520
  X, feature_columns, raw_embedding_columns, batch_size=batch_size)
521
 
522
  progress(0.95, "Generating plots")
523
- mse_plot_all = plot_mse(df, mse_all, "Facial Features + Emotions", color='blue', hide_first_n=3)
524
- mse_plot_comp = plot_mse(df, mse_comp, "Facial Features", color='deepskyblue', hide_first_n=3)
525
- mse_plot_raw = plot_mse(df, mse_raw, "Facial Embeddings", color='steelblue', hide_first_n=3)
526
 
527
  emotion_plots = [
528
  plot_mse(df, embedding_anomaly_detection(df[emotion].values.reshape(-1, 1)),
529
- f"MSE: {emotion.capitalize()}", color=color, hide_first_n=3)
530
  for emotion, color in zip(['fear', 'sad', 'angry', 'happy', 'surprise', 'neutral'],
531
  ['purple', 'green', 'orange', 'darkblue', 'gold', 'grey'])
532
  ]
@@ -569,8 +560,8 @@ iface = gr.Interface(
569
  outputs=[
570
  gr.Textbox(label="Anomaly Detection Results"),
571
  gr.Plot(label="MSE: Facial Features + Emotions"),
572
- gr.Plot(label="MSE: Facial Features (UMAP)"),
573
- gr.Plot(label="MSE: Raw Facial Embeddings"),
574
  gr.Plot(label="MSE: Fear"),
575
  gr.Plot(label="MSE: Sad"),
576
  gr.Plot(label="MSE: Angry"),
@@ -590,7 +581,7 @@ iface = gr.Interface(
590
 
591
  Adjust the parameters as needed:
592
  - Desired FPS: Frames per second to analyze (lower for faster processing)
593
- - Batch Size: Affects processing speed and memory usage
594
  """,
595
  allow_flagging="never"
596
  )
 
4
  import torch
5
  import torch.nn as nn
6
  import torch.optim as optim
 
7
  from facenet_pytorch import InceptionResnetV1, MTCNN
8
  import mediapipe as mp
9
  from fer import FER
10
+ from sklearn.cluster import DBSCAN
11
+ from sklearn.preprocessing import MinMaxScaler
 
 
12
  from sklearn.decomposition import PCA
13
  import umap
14
  import pandas as pd
 
19
  import gradio as gr
20
  import tempfile
21
  import shutil
 
22
 
 
 
 
 
 
23
 
24
  matplotlib.rcParams['figure.dpi'] = 400
25
  matplotlib.rcParams['savefig.dpi'] = 400
26
 
27
  # Initialize models and other global variables
28
+ device = 'cuda'
29
 
30
+ mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.98, 0.98, 0.98], min_face_size=100)
31
  model = InceptionResnetV1(pretrained='vggface2').eval().to(device)
32
  mp_face_mesh = mp.solutions.face_mesh
33
+ face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.7)
34
  emotion_detector = FER(mtcnn=False)
35
 
36
 
 
179
  shutil.copy(src, dst)
180
 
181
 
182
+ def find_optimal_components(embeddings, max_components=20):
183
  pca = PCA(n_components=max_components)
184
  pca.fit(embeddings)
185
 
 
260
 
261
 
262
  class LSTMAutoencoder(nn.Module):
263
+ def __init__(self, input_size, hidden_size=128, num_layers=2):
264
  super(LSTMAutoencoder, self).__init__()
265
  self.input_size = input_size
266
  self.hidden_size = hidden_size
 
274
  return out
275
 
276
 
277
+ def lstm_anomaly_detection(X, feature_columns, raw_embedding_columns, epochs=100):
278
+ device = 'cuda'
279
  X = torch.FloatTensor(X).to(device)
280
  if X.dim() == 2:
281
  X = X.unsqueeze(0)
 
319
 
320
  return mse_all, mse_comp, mse_raw
321
 
322
+ def embedding_anomaly_detection(embeddings, epochs=100):
323
+ device = 'cpu'
324
  X = torch.FloatTensor(embeddings).to(device)
325
  if X.dim() == 2:
326
  X = X.unsqueeze(0)
 
346
  mse = np.mean(np.power(X.squeeze(0).cpu().numpy() - reconstructed, 2), axis=1)
347
  return mse
348
 
349
+ def determine_anomalies(mse_values, threshold=4):
350
  mean = np.mean(mse_values)
351
  std = np.std(mse_values)
352
  anomalies = mse_values > (mean + threshold * std)
353
  return anomalies
354
 
355
 
356
+ def plot_mse(df, mse_values, title, color='blue', time_threshold=1, hide_first_n=5):
357
  plt.figure(figsize=(16, 8), dpi=300)
358
  fig, ax = plt.subplots(figsize=(16, 8))
359
 
 
511
  X, feature_columns, raw_embedding_columns, batch_size=batch_size)
512
 
513
  progress(0.95, "Generating plots")
514
+ mse_plot_all = plot_mse(df, mse_all, "Facial Features + Emotions", color='blue', hide_first_n=5)
515
+ mse_plot_comp = plot_mse(df, mse_comp, "Facial Features", color='deepskyblue', hide_first_n=5)
516
+ mse_plot_raw = plot_mse(df, mse_raw, "Facial Embeddings", color='steelblue', hide_first_n=5)
517
 
518
  emotion_plots = [
519
  plot_mse(df, embedding_anomaly_detection(df[emotion].values.reshape(-1, 1)),
520
+ f"MSE: {emotion.capitalize()}", color=color, hide_first_n=5)
521
  for emotion, color in zip(['fear', 'sad', 'angry', 'happy', 'surprise', 'neutral'],
522
  ['purple', 'green', 'orange', 'darkblue', 'gold', 'grey'])
523
  ]
 
560
  outputs=[
561
  gr.Textbox(label="Anomaly Detection Results"),
562
  gr.Plot(label="MSE: Facial Features + Emotions"),
563
+ gr.Plot(label="MSE: Facial Features"),
564
+ gr.Plot(label="MSE: Facial Embeddings"),
565
  gr.Plot(label="MSE: Fear"),
566
  gr.Plot(label="MSE: Sad"),
567
  gr.Plot(label="MSE: Angry"),
 
581
 
582
  Adjust the parameters as needed:
583
  - Desired FPS: Frames per second to analyze (lower for faster processing)
584
+ - Batch Size: Affects processing speed and GPU memory usage
585
  """,
586
  allow_flagging="never"
587
  )