Update app.py
Browse files
app.py
CHANGED
@@ -4,14 +4,11 @@ import numpy as np
|
|
4 |
import torch
|
5 |
import torch.nn as nn
|
6 |
import torch.optim as optim
|
7 |
-
import seaborn as sns
|
8 |
from facenet_pytorch import InceptionResnetV1, MTCNN
|
9 |
import mediapipe as mp
|
10 |
from fer import FER
|
11 |
-
from
|
12 |
-
from sklearn.
|
13 |
-
from sklearn.preprocessing import StandardScaler, MinMaxScaler
|
14 |
-
from sklearn.metrics import silhouette_score
|
15 |
from sklearn.decomposition import PCA
|
16 |
import umap
|
17 |
import pandas as pd
|
@@ -22,24 +19,18 @@ from PIL import Image
|
|
22 |
import gradio as gr
|
23 |
import tempfile
|
24 |
import shutil
|
25 |
-
import io
|
26 |
|
27 |
-
# Suppress TensorFlow warnings
|
28 |
-
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
29 |
-
import tensorflow as tf
|
30 |
-
|
31 |
-
tf.get_logger().setLevel('ERROR')
|
32 |
|
33 |
matplotlib.rcParams['figure.dpi'] = 400
|
34 |
matplotlib.rcParams['savefig.dpi'] = 400
|
35 |
|
36 |
# Initialize models and other global variables
|
37 |
-
device = 'cuda'
|
38 |
|
39 |
-
mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.
|
40 |
model = InceptionResnetV1(pretrained='vggface2').eval().to(device)
|
41 |
mp_face_mesh = mp.solutions.face_mesh
|
42 |
-
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.
|
43 |
emotion_detector = FER(mtcnn=False)
|
44 |
|
45 |
|
@@ -188,7 +179,7 @@ def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder
|
|
188 |
shutil.copy(src, dst)
|
189 |
|
190 |
|
191 |
-
def find_optimal_components(embeddings, max_components=
|
192 |
pca = PCA(n_components=max_components)
|
193 |
pca.fit(embeddings)
|
194 |
|
@@ -269,7 +260,7 @@ def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, de
|
|
269 |
|
270 |
|
271 |
class LSTMAutoencoder(nn.Module):
|
272 |
-
def __init__(self, input_size, hidden_size=
|
273 |
super(LSTMAutoencoder, self).__init__()
|
274 |
self.input_size = input_size
|
275 |
self.hidden_size = hidden_size
|
@@ -283,8 +274,8 @@ class LSTMAutoencoder(nn.Module):
|
|
283 |
return out
|
284 |
|
285 |
|
286 |
-
def lstm_anomaly_detection(X, feature_columns, raw_embedding_columns, epochs=100
|
287 |
-
device = 'cuda'
|
288 |
X = torch.FloatTensor(X).to(device)
|
289 |
if X.dim() == 2:
|
290 |
X = X.unsqueeze(0)
|
@@ -328,8 +319,8 @@ def lstm_anomaly_detection(X, feature_columns, raw_embedding_columns, epochs=100
|
|
328 |
|
329 |
return mse_all, mse_comp, mse_raw
|
330 |
|
331 |
-
def embedding_anomaly_detection(embeddings, epochs=100
|
332 |
-
device = '
|
333 |
X = torch.FloatTensor(embeddings).to(device)
|
334 |
if X.dim() == 2:
|
335 |
X = X.unsqueeze(0)
|
@@ -355,14 +346,14 @@ def embedding_anomaly_detection(embeddings, epochs=100, batch_size=64):
|
|
355 |
mse = np.mean(np.power(X.squeeze(0).cpu().numpy() - reconstructed, 2), axis=1)
|
356 |
return mse
|
357 |
|
358 |
-
def determine_anomalies(mse_values, threshold=
|
359 |
mean = np.mean(mse_values)
|
360 |
std = np.std(mse_values)
|
361 |
anomalies = mse_values > (mean + threshold * std)
|
362 |
return anomalies
|
363 |
|
364 |
|
365 |
-
def plot_mse(df, mse_values, title, color='blue', time_threshold=1, hide_first_n=
|
366 |
plt.figure(figsize=(16, 8), dpi=300)
|
367 |
fig, ax = plt.subplots(figsize=(16, 8))
|
368 |
|
@@ -520,13 +511,13 @@ def process_video(video_path, desired_fps, batch_size, progress=gr.Progress()):
|
|
520 |
X, feature_columns, raw_embedding_columns, batch_size=batch_size)
|
521 |
|
522 |
progress(0.95, "Generating plots")
|
523 |
-
mse_plot_all = plot_mse(df, mse_all, "Facial Features + Emotions", color='blue', hide_first_n=
|
524 |
-
mse_plot_comp = plot_mse(df, mse_comp, "Facial Features", color='deepskyblue', hide_first_n=
|
525 |
-
mse_plot_raw = plot_mse(df, mse_raw, "Facial Embeddings", color='steelblue', hide_first_n=
|
526 |
|
527 |
emotion_plots = [
|
528 |
plot_mse(df, embedding_anomaly_detection(df[emotion].values.reshape(-1, 1)),
|
529 |
-
f"MSE: {emotion.capitalize()}", color=color, hide_first_n=
|
530 |
for emotion, color in zip(['fear', 'sad', 'angry', 'happy', 'surprise', 'neutral'],
|
531 |
['purple', 'green', 'orange', 'darkblue', 'gold', 'grey'])
|
532 |
]
|
@@ -569,8 +560,8 @@ iface = gr.Interface(
|
|
569 |
outputs=[
|
570 |
gr.Textbox(label="Anomaly Detection Results"),
|
571 |
gr.Plot(label="MSE: Facial Features + Emotions"),
|
572 |
-
gr.Plot(label="MSE: Facial Features
|
573 |
-
gr.Plot(label="MSE:
|
574 |
gr.Plot(label="MSE: Fear"),
|
575 |
gr.Plot(label="MSE: Sad"),
|
576 |
gr.Plot(label="MSE: Angry"),
|
@@ -590,7 +581,7 @@ iface = gr.Interface(
|
|
590 |
|
591 |
Adjust the parameters as needed:
|
592 |
- Desired FPS: Frames per second to analyze (lower for faster processing)
|
593 |
-
- Batch Size: Affects processing speed and memory usage
|
594 |
""",
|
595 |
allow_flagging="never"
|
596 |
)
|
|
|
4 |
import torch
|
5 |
import torch.nn as nn
|
6 |
import torch.optim as optim
|
|
|
7 |
from facenet_pytorch import InceptionResnetV1, MTCNN
|
8 |
import mediapipe as mp
|
9 |
from fer import FER
|
10 |
+
from sklearn.cluster import DBSCAN
|
11 |
+
from sklearn.preprocessing import MinMaxScaler
|
|
|
|
|
12 |
from sklearn.decomposition import PCA
|
13 |
import umap
|
14 |
import pandas as pd
|
|
|
19 |
import gradio as gr
|
20 |
import tempfile
|
21 |
import shutil
|
|
|
22 |
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
matplotlib.rcParams['figure.dpi'] = 400
|
25 |
matplotlib.rcParams['savefig.dpi'] = 400
|
26 |
|
27 |
# Initialize models and other global variables
|
28 |
+
device = 'cuda'
|
29 |
|
30 |
+
mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.98, 0.98, 0.98], min_face_size=100)
|
31 |
model = InceptionResnetV1(pretrained='vggface2').eval().to(device)
|
32 |
mp_face_mesh = mp.solutions.face_mesh
|
33 |
+
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.7)
|
34 |
emotion_detector = FER(mtcnn=False)
|
35 |
|
36 |
|
|
|
179 |
shutil.copy(src, dst)
|
180 |
|
181 |
|
182 |
+
def find_optimal_components(embeddings, max_components=20):
|
183 |
pca = PCA(n_components=max_components)
|
184 |
pca.fit(embeddings)
|
185 |
|
|
|
260 |
|
261 |
|
262 |
class LSTMAutoencoder(nn.Module):
|
263 |
+
def __init__(self, input_size, hidden_size=128, num_layers=2):
|
264 |
super(LSTMAutoencoder, self).__init__()
|
265 |
self.input_size = input_size
|
266 |
self.hidden_size = hidden_size
|
|
|
274 |
return out
|
275 |
|
276 |
|
277 |
+
def lstm_anomaly_detection(X, feature_columns, raw_embedding_columns, epochs=100):
|
278 |
+
device = 'cuda'
|
279 |
X = torch.FloatTensor(X).to(device)
|
280 |
if X.dim() == 2:
|
281 |
X = X.unsqueeze(0)
|
|
|
319 |
|
320 |
return mse_all, mse_comp, mse_raw
|
321 |
|
322 |
+
def embedding_anomaly_detection(embeddings, epochs=100):
|
323 |
+
device = 'cpu'
|
324 |
X = torch.FloatTensor(embeddings).to(device)
|
325 |
if X.dim() == 2:
|
326 |
X = X.unsqueeze(0)
|
|
|
346 |
mse = np.mean(np.power(X.squeeze(0).cpu().numpy() - reconstructed, 2), axis=1)
|
347 |
return mse
|
348 |
|
349 |
+
def determine_anomalies(mse_values, threshold=4):
|
350 |
mean = np.mean(mse_values)
|
351 |
std = np.std(mse_values)
|
352 |
anomalies = mse_values > (mean + threshold * std)
|
353 |
return anomalies
|
354 |
|
355 |
|
356 |
+
def plot_mse(df, mse_values, title, color='blue', time_threshold=1, hide_first_n=5):
|
357 |
plt.figure(figsize=(16, 8), dpi=300)
|
358 |
fig, ax = plt.subplots(figsize=(16, 8))
|
359 |
|
|
|
511 |
X, feature_columns, raw_embedding_columns, batch_size=batch_size)
|
512 |
|
513 |
progress(0.95, "Generating plots")
|
514 |
+
mse_plot_all = plot_mse(df, mse_all, "Facial Features + Emotions", color='blue', hide_first_n=5)
|
515 |
+
mse_plot_comp = plot_mse(df, mse_comp, "Facial Features", color='deepskyblue', hide_first_n=5)
|
516 |
+
mse_plot_raw = plot_mse(df, mse_raw, "Facial Embeddings", color='steelblue', hide_first_n=5)
|
517 |
|
518 |
emotion_plots = [
|
519 |
plot_mse(df, embedding_anomaly_detection(df[emotion].values.reshape(-1, 1)),
|
520 |
+
f"MSE: {emotion.capitalize()}", color=color, hide_first_n=5)
|
521 |
for emotion, color in zip(['fear', 'sad', 'angry', 'happy', 'surprise', 'neutral'],
|
522 |
['purple', 'green', 'orange', 'darkblue', 'gold', 'grey'])
|
523 |
]
|
|
|
560 |
outputs=[
|
561 |
gr.Textbox(label="Anomaly Detection Results"),
|
562 |
gr.Plot(label="MSE: Facial Features + Emotions"),
|
563 |
+
gr.Plot(label="MSE: Facial Features"),
|
564 |
+
gr.Plot(label="MSE: Facial Embeddings"),
|
565 |
gr.Plot(label="MSE: Fear"),
|
566 |
gr.Plot(label="MSE: Sad"),
|
567 |
gr.Plot(label="MSE: Angry"),
|
|
|
581 |
|
582 |
Adjust the parameters as needed:
|
583 |
- Desired FPS: Frames per second to analyze (lower for faster processing)
|
584 |
+
- Batch Size: Affects processing speed and GPU memory usage
|
585 |
""",
|
586 |
allow_flagging="never"
|
587 |
)
|