Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,6 +12,7 @@ from scipy import interpolate
|
|
| 12 |
from sklearn.cluster import DBSCAN, KMeans
|
| 13 |
from sklearn.preprocessing import StandardScaler, MinMaxScaler
|
| 14 |
from sklearn.metrics import silhouette_score
|
|
|
|
| 15 |
import umap
|
| 16 |
import pandas as pd
|
| 17 |
import matplotlib
|
|
@@ -41,6 +42,7 @@ mp_face_mesh = mp.solutions.face_mesh
|
|
| 41 |
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.5)
|
| 42 |
emotion_detector = FER(mtcnn=False)
|
| 43 |
|
|
|
|
| 44 |
def frame_to_timecode(frame_num, total_frames, duration):
|
| 45 |
total_seconds = (frame_num / total_frames) * duration
|
| 46 |
hours = int(total_seconds // 3600)
|
|
@@ -49,6 +51,7 @@ def frame_to_timecode(frame_num, total_frames, duration):
|
|
| 49 |
milliseconds = int((total_seconds - int(total_seconds)) * 1000)
|
| 50 |
return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}"
|
| 51 |
|
|
|
|
| 52 |
def get_face_embedding_and_emotion(face_img):
|
| 53 |
face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255
|
| 54 |
face_tensor = (face_tensor - 0.5) / 0.5
|
|
@@ -64,6 +67,7 @@ def get_face_embedding_and_emotion(face_img):
|
|
| 64 |
|
| 65 |
return embedding.cpu().numpy().flatten(), emotion_dict
|
| 66 |
|
|
|
|
| 67 |
def alignFace(img):
|
| 68 |
img_raw = img.copy()
|
| 69 |
results = face_mesh.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
|
@@ -89,6 +93,7 @@ def alignFace(img):
|
|
| 89 |
new_img = cv2.warpAffine(img_raw, rotation_matrix, (width, height))
|
| 90 |
return new_img
|
| 91 |
|
|
|
|
| 92 |
def extract_frames(video_path, output_folder, desired_fps, progress_callback=None):
|
| 93 |
os.makedirs(output_folder, exist_ok=True)
|
| 94 |
clip = VideoFileClip(video_path)
|
|
@@ -112,6 +117,7 @@ def extract_frames(video_path, output_folder, desired_fps, progress_callback=Non
|
|
| 112 |
clip.close()
|
| 113 |
return frame_count, original_fps
|
| 114 |
|
|
|
|
| 115 |
def process_frames(frames_folder, aligned_faces_folder, frame_count, progress, batch_size):
|
| 116 |
embeddings_by_frame = {}
|
| 117 |
emotions_by_frame = {}
|
|
@@ -155,6 +161,7 @@ def process_frames(frames_folder, aligned_faces_folder, frame_count, progress, b
|
|
| 155 |
|
| 156 |
return embeddings_by_frame, emotions_by_frame, aligned_face_paths
|
| 157 |
|
|
|
|
| 158 |
def cluster_faces(embeddings):
|
| 159 |
if len(embeddings) < 2:
|
| 160 |
print("Not enough faces for clustering. Assigning all to one cluster.")
|
|
@@ -171,6 +178,7 @@ def cluster_faces(embeddings):
|
|
| 171 |
|
| 172 |
return clusters
|
| 173 |
|
|
|
|
| 174 |
def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder):
|
| 175 |
for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters):
|
| 176 |
person_folder = os.path.join(organized_faces_folder, f"person_{cluster}")
|
|
@@ -179,8 +187,34 @@ def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder
|
|
| 179 |
dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg")
|
| 180 |
shutil.copy(src, dst)
|
| 181 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, output_folder,
|
| 183 |
-
|
| 184 |
emotions = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']
|
| 185 |
person_data = {}
|
| 186 |
|
|
@@ -199,7 +233,10 @@ def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, de
|
|
| 199 |
embeddings_array = np.array(embeddings)
|
| 200 |
np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array)
|
| 201 |
|
| 202 |
-
|
|
|
|
|
|
|
|
|
|
| 203 |
embeddings_reduced = reducer.fit_transform(embeddings)
|
| 204 |
|
| 205 |
scaler = MinMaxScaler(feature_range=(0, 1))
|
|
@@ -216,7 +253,11 @@ def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, de
|
|
| 216 |
'Embedding_Index': range(len(embeddings))
|
| 217 |
}
|
| 218 |
|
| 219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
df_data[f'Comp {i + 1}'] = embeddings_reduced_normalized[:, i]
|
| 221 |
|
| 222 |
for emotion in emotions:
|
|
@@ -226,33 +267,6 @@ def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, de
|
|
| 226 |
|
| 227 |
return df, largest_cluster
|
| 228 |
|
| 229 |
-
def determine_optimal_anomalies(anomaly_scores, z_threshold=3.5):
|
| 230 |
-
mean = np.mean(anomaly_scores)
|
| 231 |
-
std = np.std(anomaly_scores)
|
| 232 |
-
threshold = mean + z_threshold * std
|
| 233 |
-
anomalies = anomaly_scores > threshold
|
| 234 |
-
return anomalies, np.where(anomalies)[0]
|
| 235 |
-
|
| 236 |
-
def timecode_to_seconds(timecode):
|
| 237 |
-
h, m, s = map(float, timecode.split(':'))
|
| 238 |
-
return h * 3600 + m * 60 + s
|
| 239 |
-
|
| 240 |
-
def group_similar_timecodes(timecodes, scores, threshold_seconds=10):
|
| 241 |
-
grouped = []
|
| 242 |
-
current_group = []
|
| 243 |
-
|
| 244 |
-
for i, (timecode, score) in enumerate(zip(timecodes, scores)):
|
| 245 |
-
if not current_group or abs(
|
| 246 |
-
timecode_to_seconds(timecode) - timecode_to_seconds(current_group[0][0])) <= threshold_seconds:
|
| 247 |
-
current_group.append((timecode, score, i))
|
| 248 |
-
else:
|
| 249 |
-
grouped.append(current_group)
|
| 250 |
-
current_group = [(timecode, score, i)]
|
| 251 |
-
|
| 252 |
-
if current_group:
|
| 253 |
-
grouped.append(current_group)
|
| 254 |
-
|
| 255 |
-
return grouped
|
| 256 |
|
| 257 |
class LSTMAutoencoder(nn.Module):
|
| 258 |
def __init__(self, input_size, hidden_size=64, num_layers=2):
|
|
@@ -268,21 +282,17 @@ class LSTMAutoencoder(nn.Module):
|
|
| 268 |
out = self.fc(outputs)
|
| 269 |
return out
|
| 270 |
|
| 271 |
-
|
|
|
|
| 272 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 273 |
X = torch.FloatTensor(X).to(device)
|
| 274 |
if X.dim() == 2:
|
| 275 |
X = X.unsqueeze(0)
|
| 276 |
elif X.dim() == 1:
|
| 277 |
X = X.unsqueeze(0).unsqueeze(2)
|
| 278 |
-
elif X.dim() > 3:
|
| 279 |
-
raise ValueError(f"Input X should be 1D, 2D or 3D, but got {X.dim()} dimensions")
|
| 280 |
|
| 281 |
print(f"X shape after reshaping: {X.shape}")
|
| 282 |
|
| 283 |
-
train_size = int(0.9 * X.shape[1])
|
| 284 |
-
X_train, X_val = X[:, :train_size, :], X[:, train_size:, :]
|
| 285 |
-
|
| 286 |
model = LSTMAutoencoder(input_size=X.shape[2]).to(device)
|
| 287 |
criterion = nn.MSELoss()
|
| 288 |
optimizer = optim.Adam(model.parameters())
|
|
@@ -290,22 +300,19 @@ def lstm_anomaly_detection(X, feature_columns, epochs=100, batch_size=64):
|
|
| 290 |
for epoch in range(epochs):
|
| 291 |
model.train()
|
| 292 |
optimizer.zero_grad()
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
optimizer.step()
|
| 297 |
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
output_val = model(X_val)
|
| 301 |
-
loss_val = criterion(output_val, X_val.squeeze(0))
|
| 302 |
|
| 303 |
model.eval()
|
| 304 |
with torch.no_grad():
|
| 305 |
reconstructed = model(X).squeeze(0).cpu().numpy()
|
| 306 |
|
| 307 |
mse_all = np.mean(np.power(X.squeeze(0).cpu().numpy() - reconstructed, 2), axis=1)
|
| 308 |
-
anomalies_all, top_indices_all = determine_optimal_anomalies(mse_all)
|
| 309 |
|
| 310 |
component_columns = [col for col in feature_columns if col.startswith('Comp')]
|
| 311 |
component_indices = [feature_columns.index(col) for col in component_columns]
|
|
@@ -316,53 +323,10 @@ def lstm_anomaly_detection(X, feature_columns, epochs=100, batch_size=64):
|
|
| 316 |
else:
|
| 317 |
mse_comp = mse_all
|
| 318 |
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
return (anomalies_all, mse_all, top_indices_all,
|
| 322 |
-
anomalies_comp, mse_comp, top_indices_comp,
|
| 323 |
-
model)
|
| 324 |
-
|
| 325 |
-
def emotion_anomaly_detection(emotion_data, epochs=100, batch_size=64):
|
| 326 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 327 |
-
X = torch.FloatTensor(emotion_data.values).to(device)
|
| 328 |
-
if X.dim() == 1:
|
| 329 |
-
X = X.unsqueeze(0).unsqueeze(2) # Add batch and feature dimensions
|
| 330 |
-
elif X.dim() == 2:
|
| 331 |
-
X = X.unsqueeze(0) # Add batch dimension
|
| 332 |
-
|
| 333 |
-
model = LSTMAutoencoder(input_size=1).to(device)
|
| 334 |
-
criterion = nn.MSELoss()
|
| 335 |
-
optimizer = optim.Adam(model.parameters())
|
| 336 |
|
| 337 |
-
|
| 338 |
-
model.train()
|
| 339 |
-
optimizer.zero_grad()
|
| 340 |
-
output = model(X)
|
| 341 |
-
loss = criterion(output, X)
|
| 342 |
-
loss.backward()
|
| 343 |
-
optimizer.step()
|
| 344 |
-
|
| 345 |
-
model.eval()
|
| 346 |
-
with torch.no_grad():
|
| 347 |
-
reconstructed = model(X).squeeze(0).cpu().numpy()
|
| 348 |
-
|
| 349 |
-
mse = np.mean(np.power(X.squeeze(0).cpu().numpy() - reconstructed, 2), axis=1)
|
| 350 |
-
anomalies, top_indices = determine_optimal_anomalies(mse)
|
| 351 |
-
|
| 352 |
-
return anomalies, mse, top_indices
|
| 353 |
-
|
| 354 |
-
def normalize_scores(scores):
|
| 355 |
-
min_score = np.min(scores)
|
| 356 |
-
max_score = np.max(scores)
|
| 357 |
-
if max_score == min_score:
|
| 358 |
-
return np.full_like(scores, 100)
|
| 359 |
-
return ((scores - min_score) / (max_score - min_score)) * 100
|
| 360 |
-
|
| 361 |
-
def plot_to_image(fig):
|
| 362 |
-
buf = io.BytesIO()
|
| 363 |
-
fig.savefig(buf, format='png', dpi=300, bbox_inches='tight')
|
| 364 |
-
buf.seek(0)
|
| 365 |
-
return buf
|
| 366 |
|
| 367 |
def embedding_anomaly_detection(embeddings, epochs=100, batch_size=64):
|
| 368 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
@@ -389,106 +353,74 @@ def embedding_anomaly_detection(embeddings, epochs=100, batch_size=64):
|
|
| 389 |
reconstructed = model(X).squeeze(0).cpu().numpy()
|
| 390 |
|
| 391 |
mse = np.mean(np.power(X.squeeze(0).cpu().numpy() - reconstructed, 2), axis=1)
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
return anomalies, mse, top_indices
|
| 395 |
-
def plot_anomaly_scores(df, anomaly_scores, top_indices, title, timecodes):
|
| 396 |
-
plt.figure(figsize=(16, 8), dpi=300)
|
| 397 |
-
fig, ax = plt.subplots(figsize=(16, 8))
|
| 398 |
-
|
| 399 |
-
df['Seconds'] = df['Timecode'].apply(
|
| 400 |
-
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
|
| 401 |
-
|
| 402 |
-
# Filter out data points without faces
|
| 403 |
-
valid_indices = [i for i in range(len(anomaly_scores)) if i in df.index]
|
| 404 |
-
seconds = df['Seconds'].iloc[valid_indices].values
|
| 405 |
-
scores = anomaly_scores[valid_indices]
|
| 406 |
|
| 407 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 408 |
|
| 409 |
-
top_indices = [idx for idx in top_indices if idx in valid_indices]
|
| 410 |
-
ax.scatter(df['Seconds'].iloc[top_indices], anomaly_scores[top_indices], color='red', s=50, zorder=5)
|
| 411 |
-
|
| 412 |
-
# Calculate and plot baseline
|
| 413 |
-
non_anomalous_scores = np.delete(scores, top_indices)
|
| 414 |
-
baseline = np.mean(non_anomalous_scores)
|
| 415 |
-
ax.axhline(y=baseline, color='black', linestyle='--', linewidth=2.5)
|
| 416 |
-
ax.text(df['Seconds'].max(), baseline, f'Baseline ({baseline:.2f})',
|
| 417 |
-
verticalalignment='bottom', horizontalalignment='right', color='black')
|
| 418 |
-
|
| 419 |
-
grouped_timecodes = group_similar_timecodes([df['Timecode'].iloc[idx] for idx in top_indices],
|
| 420 |
-
scores[top_indices])
|
| 421 |
-
|
| 422 |
-
for group in grouped_timecodes:
|
| 423 |
-
max_score_idx = max(range(len(group)), key=lambda i: group[i][1])
|
| 424 |
-
timecode, score, idx = group[max_score_idx]
|
| 425 |
-
ax.annotate(timecode,
|
| 426 |
-
(df['Seconds'].iloc[top_indices[idx]], score),
|
| 427 |
-
xytext=(5, 5), textcoords='offset points',
|
| 428 |
-
fontsize=6, color='red')
|
| 429 |
-
|
| 430 |
-
max_seconds = df['Seconds'].max()
|
| 431 |
-
ax.set_xlim(0, max_seconds)
|
| 432 |
-
num_ticks = 100
|
| 433 |
-
ax.set_xticks(np.linspace(0, max_seconds, num_ticks))
|
| 434 |
-
ax.set_xticklabels([f"{int(x // 60):02d}:{int(x % 60):02d}" for x in ax.get_xticks()],
|
| 435 |
-
rotation=90, ha='center', va='top')
|
| 436 |
-
|
| 437 |
-
ax.set_xlabel('Time')
|
| 438 |
-
ax.set_ylabel('Anomaly Score')
|
| 439 |
-
ax.set_title(title)
|
| 440 |
-
|
| 441 |
-
ax.grid(True, linestyle='--', alpha=0.7)
|
| 442 |
-
plt.tight_layout()
|
| 443 |
-
plt.close()
|
| 444 |
-
return fig
|
| 445 |
|
| 446 |
-
def
|
| 447 |
plt.figure(figsize=(16, 8), dpi=300)
|
| 448 |
fig, ax = plt.subplots(figsize=(16, 8))
|
| 449 |
|
| 450 |
df['Seconds'] = df['Timecode'].apply(
|
| 451 |
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
|
| 452 |
|
| 453 |
-
#
|
| 454 |
-
|
| 455 |
-
seconds = df['Seconds'].iloc[valid_indices].values
|
| 456 |
-
scores = anomaly_scores[valid_indices]
|
| 457 |
|
| 458 |
-
|
|
|
|
| 459 |
|
| 460 |
-
|
| 461 |
-
|
|
|
|
| 462 |
|
| 463 |
-
#
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
verticalalignment='bottom', horizontalalignment='right', color='black')
|
| 469 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 470 |
|
| 471 |
-
|
| 472 |
-
|
|
|
|
|
|
|
|
|
|
| 473 |
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
xytext=(5, 5), textcoords='offset points',
|
| 480 |
-
fontsize=6, color='red')
|
| 481 |
|
|
|
|
| 482 |
max_seconds = df['Seconds'].max()
|
| 483 |
-
ax.set_xlim(0, max_seconds)
|
| 484 |
num_ticks = 100
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
|
|
|
|
|
|
|
|
|
| 488 |
|
| 489 |
ax.set_xlabel('Time')
|
| 490 |
-
ax.set_ylabel(
|
| 491 |
-
ax.set_title(
|
| 492 |
|
| 493 |
ax.grid(True, linestyle='--', alpha=0.7)
|
| 494 |
plt.tight_layout()
|
|
@@ -522,10 +454,18 @@ def get_all_face_samples(organized_faces_folder, output_folder, largest_cluster)
|
|
| 522 |
cv2.imwrite(output_path, small_face)
|
| 523 |
face_samples["others"].append(output_path)
|
| 524 |
return face_samples
|
| 525 |
-
|
|
|
|
| 526 |
output_folder = "output"
|
| 527 |
os.makedirs(output_folder, exist_ok=True)
|
| 528 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 529 |
with tempfile.TemporaryDirectory() as temp_dir:
|
| 530 |
aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces')
|
| 531 |
organized_faces_folder = os.path.join(temp_dir, 'organized_faces')
|
|
@@ -552,7 +492,7 @@ def process_video(video_path, num_components, desired_fps, batch_size, progress=
|
|
| 552 |
|
| 553 |
if not aligned_face_paths:
|
| 554 |
return ("No faces were extracted from the video.",
|
| 555 |
-
None, None, None, None, None, None, None, None)
|
| 556 |
|
| 557 |
progress(0.6, "Clustering faces")
|
| 558 |
embeddings = [embedding for _, embedding in embeddings_by_frame.items()]
|
|
@@ -564,7 +504,7 @@ def process_video(video_path, num_components, desired_fps, batch_size, progress=
|
|
| 564 |
|
| 565 |
progress(0.8, "Saving person data")
|
| 566 |
df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps,
|
| 567 |
-
original_fps, temp_dir,
|
| 568 |
|
| 569 |
progress(0.85, "Getting face samples")
|
| 570 |
face_samples = get_all_face_samples(organized_faces_folder, output_folder, largest_cluster)
|
|
@@ -572,46 +512,29 @@ def process_video(video_path, num_components, desired_fps, batch_size, progress=
|
|
| 572 |
progress(0.9, "Performing anomaly detection")
|
| 573 |
feature_columns = [col for col in df.columns if
|
| 574 |
col not in ['Frame', 'Timecode', 'Time (Minutes)', 'Embedding_Index']]
|
|
|
|
| 575 |
X = df[feature_columns].values
|
| 576 |
|
| 577 |
try:
|
| 578 |
-
|
| 579 |
-
X, feature_columns, batch_size=batch_size)
|
| 580 |
-
|
| 581 |
-
anomaly_scores_all = normalize_scores(anomaly_scores_all)
|
| 582 |
-
anomaly_scores_comp = normalize_scores(anomaly_scores_comp)
|
| 583 |
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
'anomalies': anomalies,
|
| 589 |
-
'scores': normalize_scores(scores),
|
| 590 |
-
'indices': indices
|
| 591 |
-
}
|
| 592 |
|
| 593 |
-
except Exception as e:
|
| 594 |
-
print(f"Error details: {str(e)}")
|
| 595 |
-
return f"Error in anomaly detection: {str(e)}", None, None, None, None, None, None, None, None
|
| 596 |
-
|
| 597 |
-
progress(0.95, "Generating plots")
|
| 598 |
-
try:
|
| 599 |
-
anomaly_plot_all = plot_anomaly_scores(df, anomaly_scores_all, top_indices_all,
|
| 600 |
-
"Facial Features + Emotions",
|
| 601 |
-
df['Timecode'].iloc[top_indices_all].values)
|
| 602 |
-
anomaly_plot_comp = plot_anomaly_scores(df, anomaly_scores_comp, top_indices_comp, "Facial Features",
|
| 603 |
-
df['Timecode'].iloc[top_indices_comp].values)
|
| 604 |
emotion_plots = [
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
emotion_anomalies[emotion]['indices'],
|
| 608 |
-
color,
|
| 609 |
-
df['Timecode'].iloc[emotion_anomalies[emotion]['indices']].values)
|
| 610 |
for emotion, color in zip(['fear', 'sad', 'angry', 'happy', 'surprise', 'neutral'],
|
| 611 |
['purple', 'green', 'orange', 'darkblue', 'gold', 'grey'])
|
| 612 |
]
|
|
|
|
| 613 |
except Exception as e:
|
| 614 |
-
|
|
|
|
|
|
|
| 615 |
|
| 616 |
progress(1.0, "Preparing results")
|
| 617 |
results = f"Number of persons/clusters detected: {num_clusters}\n\n"
|
|
@@ -619,55 +542,58 @@ def process_video(video_path, num_components, desired_fps, batch_size, progress=
|
|
| 619 |
for cluster_id in range(num_clusters):
|
| 620 |
results += f"Person/Cluster {cluster_id + 1}: {len([c for c in clusters if c == cluster_id])} frames\n"
|
| 621 |
|
| 622 |
-
|
| 623 |
return (
|
| 624 |
results,
|
| 625 |
-
|
| 626 |
-
|
|
|
|
| 627 |
*emotion_plots,
|
| 628 |
face_samples["most_frequent"],
|
| 629 |
face_samples["others"]
|
| 630 |
)
|
| 631 |
|
| 632 |
-
|
| 633 |
gallery_outputs = [
|
| 634 |
gr.Gallery(label="Most Frequent Person Random Samples", columns=5, rows=2, height="auto"),
|
| 635 |
gr.Gallery(label="Other Persons Random Samples", columns=5, rows=1, height="auto")
|
| 636 |
]
|
| 637 |
|
|
|
|
| 638 |
iface = gr.Interface(
|
| 639 |
fn=process_video,
|
| 640 |
inputs=[
|
| 641 |
gr.Video(),
|
| 642 |
-
gr.Slider(minimum=1, maximum=10, step=1, value=5, label="Number of Components"),
|
| 643 |
gr.Slider(minimum=1, maximum=20, step=1, value=10, label="Desired FPS"),
|
| 644 |
gr.Slider(minimum=1, maximum=32, step=1, value=8, label="Batch Size")
|
| 645 |
],
|
| 646 |
outputs=[
|
| 647 |
gr.Textbox(label="Anomaly Detection Results"),
|
| 648 |
-
gr.Plot(label="
|
| 649 |
-
gr.Plot(label="
|
| 650 |
-
gr.Plot(label="
|
| 651 |
-
gr.Plot(label="
|
| 652 |
-
gr.Plot(label="
|
| 653 |
-
gr.Plot(label="
|
| 654 |
-
gr.Plot(label="
|
| 655 |
-
gr.Plot(label="
|
|
|
|
| 656 |
] + gallery_outputs,
|
| 657 |
title="Facial Expressions Anomaly Detection",
|
| 658 |
description="""
|
| 659 |
This application detects anomalies in facial expressions and emotions from a video input.
|
| 660 |
It identifies distinct persons in the video and provides sample faces for each, with multiple samples for the most frequent person.
|
| 661 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 662 |
Adjust the parameters as needed:
|
| 663 |
-
- Number of Components: Complexity of the facial expression model
|
| 664 |
- Desired FPS: Frames per second to analyze (lower for faster processing)
|
| 665 |
- Batch Size: Affects processing speed and memory usage
|
| 666 |
-
|
| 667 |
-
Click on any graph to enlarge it.
|
| 668 |
""",
|
| 669 |
allow_flagging="never"
|
| 670 |
)
|
| 671 |
|
| 672 |
-
|
| 673 |
-
iface.launch()
|
|
|
|
| 12 |
from sklearn.cluster import DBSCAN, KMeans
|
| 13 |
from sklearn.preprocessing import StandardScaler, MinMaxScaler
|
| 14 |
from sklearn.metrics import silhouette_score
|
| 15 |
+
from sklearn.decomposition import PCA
|
| 16 |
import umap
|
| 17 |
import pandas as pd
|
| 18 |
import matplotlib
|
|
|
|
| 42 |
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.5)
|
| 43 |
emotion_detector = FER(mtcnn=False)
|
| 44 |
|
| 45 |
+
|
| 46 |
def frame_to_timecode(frame_num, total_frames, duration):
|
| 47 |
total_seconds = (frame_num / total_frames) * duration
|
| 48 |
hours = int(total_seconds // 3600)
|
|
|
|
| 51 |
milliseconds = int((total_seconds - int(total_seconds)) * 1000)
|
| 52 |
return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}"
|
| 53 |
|
| 54 |
+
|
| 55 |
def get_face_embedding_and_emotion(face_img):
|
| 56 |
face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255
|
| 57 |
face_tensor = (face_tensor - 0.5) / 0.5
|
|
|
|
| 67 |
|
| 68 |
return embedding.cpu().numpy().flatten(), emotion_dict
|
| 69 |
|
| 70 |
+
|
| 71 |
def alignFace(img):
|
| 72 |
img_raw = img.copy()
|
| 73 |
results = face_mesh.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
|
|
|
| 93 |
new_img = cv2.warpAffine(img_raw, rotation_matrix, (width, height))
|
| 94 |
return new_img
|
| 95 |
|
| 96 |
+
|
| 97 |
def extract_frames(video_path, output_folder, desired_fps, progress_callback=None):
|
| 98 |
os.makedirs(output_folder, exist_ok=True)
|
| 99 |
clip = VideoFileClip(video_path)
|
|
|
|
| 117 |
clip.close()
|
| 118 |
return frame_count, original_fps
|
| 119 |
|
| 120 |
+
|
| 121 |
def process_frames(frames_folder, aligned_faces_folder, frame_count, progress, batch_size):
|
| 122 |
embeddings_by_frame = {}
|
| 123 |
emotions_by_frame = {}
|
|
|
|
| 161 |
|
| 162 |
return embeddings_by_frame, emotions_by_frame, aligned_face_paths
|
| 163 |
|
| 164 |
+
|
| 165 |
def cluster_faces(embeddings):
|
| 166 |
if len(embeddings) < 2:
|
| 167 |
print("Not enough faces for clustering. Assigning all to one cluster.")
|
|
|
|
| 178 |
|
| 179 |
return clusters
|
| 180 |
|
| 181 |
+
|
| 182 |
def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder):
|
| 183 |
for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters):
|
| 184 |
person_folder = os.path.join(organized_faces_folder, f"person_{cluster}")
|
|
|
|
| 187 |
dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg")
|
| 188 |
shutil.copy(src, dst)
|
| 189 |
|
| 190 |
+
|
| 191 |
+
def find_optimal_components(embeddings, max_components=10):
|
| 192 |
+
pca = PCA(n_components=max_components)
|
| 193 |
+
pca.fit(embeddings)
|
| 194 |
+
|
| 195 |
+
explained_variance_ratio = pca.explained_variance_ratio_
|
| 196 |
+
cumulative_variance_ratio = np.cumsum(explained_variance_ratio)
|
| 197 |
+
|
| 198 |
+
# Plot explained variance ratio
|
| 199 |
+
plt.figure(figsize=(10, 6))
|
| 200 |
+
plt.plot(range(1, max_components + 1), cumulative_variance_ratio, 'bo-')
|
| 201 |
+
plt.xlabel('Number of Components')
|
| 202 |
+
plt.ylabel('Cumulative Explained Variance Ratio')
|
| 203 |
+
plt.title('Explained Variance Ratio vs. Number of Components')
|
| 204 |
+
plt.grid(True)
|
| 205 |
+
|
| 206 |
+
# Find elbow point
|
| 207 |
+
differences = np.diff(cumulative_variance_ratio)
|
| 208 |
+
elbow_point = np.argmin(differences) + 1
|
| 209 |
+
|
| 210 |
+
plt.axvline(x=elbow_point, color='r', linestyle='--', label=f'Elbow point: {elbow_point}')
|
| 211 |
+
plt.legend()
|
| 212 |
+
|
| 213 |
+
return elbow_point, plt
|
| 214 |
+
|
| 215 |
+
|
| 216 |
def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, output_folder,
|
| 217 |
+
video_duration):
|
| 218 |
emotions = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']
|
| 219 |
person_data = {}
|
| 220 |
|
|
|
|
| 233 |
embeddings_array = np.array(embeddings)
|
| 234 |
np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array)
|
| 235 |
|
| 236 |
+
# Find optimal number of components
|
| 237 |
+
optimal_components, _ = find_optimal_components(embeddings_array)
|
| 238 |
+
|
| 239 |
+
reducer = umap.UMAP(n_components=optimal_components, random_state=1)
|
| 240 |
embeddings_reduced = reducer.fit_transform(embeddings)
|
| 241 |
|
| 242 |
scaler = MinMaxScaler(feature_range=(0, 1))
|
|
|
|
| 253 |
'Embedding_Index': range(len(embeddings))
|
| 254 |
}
|
| 255 |
|
| 256 |
+
# Add raw embeddings
|
| 257 |
+
for i in range(len(embeddings[0])):
|
| 258 |
+
df_data[f'Raw_Embedding_{i}'] = [embedding[i] for embedding in embeddings]
|
| 259 |
+
|
| 260 |
+
for i in range(optimal_components):
|
| 261 |
df_data[f'Comp {i + 1}'] = embeddings_reduced_normalized[:, i]
|
| 262 |
|
| 263 |
for emotion in emotions:
|
|
|
|
| 267 |
|
| 268 |
return df, largest_cluster
|
| 269 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
|
| 271 |
class LSTMAutoencoder(nn.Module):
|
| 272 |
def __init__(self, input_size, hidden_size=64, num_layers=2):
|
|
|
|
| 282 |
out = self.fc(outputs)
|
| 283 |
return out
|
| 284 |
|
| 285 |
+
|
| 286 |
+
def lstm_anomaly_detection(X, feature_columns, raw_embedding_columns, epochs=100, batch_size=64):
|
| 287 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 288 |
X = torch.FloatTensor(X).to(device)
|
| 289 |
if X.dim() == 2:
|
| 290 |
X = X.unsqueeze(0)
|
| 291 |
elif X.dim() == 1:
|
| 292 |
X = X.unsqueeze(0).unsqueeze(2)
|
|
|
|
|
|
|
| 293 |
|
| 294 |
print(f"X shape after reshaping: {X.shape}")
|
| 295 |
|
|
|
|
|
|
|
|
|
|
| 296 |
model = LSTMAutoencoder(input_size=X.shape[2]).to(device)
|
| 297 |
criterion = nn.MSELoss()
|
| 298 |
optimizer = optim.Adam(model.parameters())
|
|
|
|
| 300 |
for epoch in range(epochs):
|
| 301 |
model.train()
|
| 302 |
optimizer.zero_grad()
|
| 303 |
+
output = model(X)
|
| 304 |
+
loss = criterion(output, X)
|
| 305 |
+
loss.backward()
|
| 306 |
optimizer.step()
|
| 307 |
|
| 308 |
+
if epoch % 10 == 0:
|
| 309 |
+
print(f"Epoch [{epoch}/{epochs}], Loss: {loss.item():.4f}")
|
|
|
|
|
|
|
| 310 |
|
| 311 |
model.eval()
|
| 312 |
with torch.no_grad():
|
| 313 |
reconstructed = model(X).squeeze(0).cpu().numpy()
|
| 314 |
|
| 315 |
mse_all = np.mean(np.power(X.squeeze(0).cpu().numpy() - reconstructed, 2), axis=1)
|
|
|
|
| 316 |
|
| 317 |
component_columns = [col for col in feature_columns if col.startswith('Comp')]
|
| 318 |
component_indices = [feature_columns.index(col) for col in component_columns]
|
|
|
|
| 323 |
else:
|
| 324 |
mse_comp = mse_all
|
| 325 |
|
| 326 |
+
raw_embedding_indices = [feature_columns.index(col) for col in raw_embedding_columns]
|
| 327 |
+
mse_raw = np.mean(np.power(X.squeeze(0).cpu().numpy()[:, raw_embedding_indices] - reconstructed[:, raw_embedding_indices], 2), axis=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 328 |
|
| 329 |
+
return mse_all, mse_comp, mse_raw
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
|
| 331 |
def embedding_anomaly_detection(embeddings, epochs=100, batch_size=64):
|
| 332 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
| 353 |
reconstructed = model(X).squeeze(0).cpu().numpy()
|
| 354 |
|
| 355 |
mse = np.mean(np.power(X.squeeze(0).cpu().numpy() - reconstructed, 2), axis=1)
|
| 356 |
+
return mse
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
|
| 358 |
+
def determine_anomalies(mse_values, threshold=3.5):
|
| 359 |
+
mean = np.mean(mse_values)
|
| 360 |
+
std = np.std(mse_values)
|
| 361 |
+
anomalies = mse_values > (mean + threshold * std)
|
| 362 |
+
return anomalies
|
| 363 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 364 |
|
| 365 |
+
def plot_mse(df, mse_values, title, color='blue', time_threshold=1, hide_first_n=3):
|
| 366 |
plt.figure(figsize=(16, 8), dpi=300)
|
| 367 |
fig, ax = plt.subplots(figsize=(16, 8))
|
| 368 |
|
| 369 |
df['Seconds'] = df['Timecode'].apply(
|
| 370 |
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
|
| 371 |
|
| 372 |
+
# Plot all points
|
| 373 |
+
ax.scatter(df['Seconds'], mse_values, color=color, alpha=0.7, s=10)
|
|
|
|
|
|
|
| 374 |
|
| 375 |
+
# Determine anomalies
|
| 376 |
+
anomalies = determine_anomalies(mse_values)
|
| 377 |
|
| 378 |
+
# Hide the first n anomalies
|
| 379 |
+
visible_anomalies = np.where(anomalies)[0][hide_first_n:]
|
| 380 |
+
ax.scatter(df['Seconds'].iloc[visible_anomalies], mse_values[visible_anomalies], color='red', s=50, zorder=5)
|
| 381 |
|
| 382 |
+
# Group closely occurring anomalies and annotate only the highest MSE
|
| 383 |
+
anomaly_data = list(zip(df['Timecode'].iloc[visible_anomalies],
|
| 384 |
+
df['Seconds'].iloc[visible_anomalies],
|
| 385 |
+
mse_values[visible_anomalies]))
|
| 386 |
+
anomaly_data.sort(key=lambda x: x[1]) # Sort by seconds
|
|
|
|
| 387 |
|
| 388 |
+
grouped_anomalies = []
|
| 389 |
+
current_group = []
|
| 390 |
+
for timecode, sec, mse in anomaly_data:
|
| 391 |
+
if not current_group or sec - current_group[-1][1] <= time_threshold:
|
| 392 |
+
current_group.append((timecode, sec, mse))
|
| 393 |
+
else:
|
| 394 |
+
grouped_anomalies.append(current_group)
|
| 395 |
+
current_group = [(timecode, sec, mse)]
|
| 396 |
+
if current_group:
|
| 397 |
+
grouped_anomalies.append(current_group)
|
| 398 |
|
| 399 |
+
for group in grouped_anomalies:
|
| 400 |
+
highest_mse_anomaly = max(group, key=lambda x: x[2])
|
| 401 |
+
timecode, sec, mse = highest_mse_anomaly
|
| 402 |
+
ax.annotate(timecode, (sec, mse), textcoords="offset points", xytext=(0, 10),
|
| 403 |
+
ha='center', fontsize=8, color='red')
|
| 404 |
|
| 405 |
+
# Add baseline (mean MSE) line
|
| 406 |
+
mean_mse = np.mean(mse_values)
|
| 407 |
+
ax.axhline(y=mean_mse, color='black', linestyle='--', linewidth=1)
|
| 408 |
+
ax.text(df['Seconds'].max(), mean_mse, f'Baseline ({mean_mse:.6f})',
|
| 409 |
+
verticalalignment='bottom', horizontalalignment='right', color='black', fontsize=8)
|
|
|
|
|
|
|
| 410 |
|
| 411 |
+
# Set x-axis labels to timecodes
|
| 412 |
max_seconds = df['Seconds'].max()
|
|
|
|
| 413 |
num_ticks = 100
|
| 414 |
+
tick_locations = np.linspace(0, max_seconds, num_ticks)
|
| 415 |
+
tick_labels = [frame_to_timecode(int(s * df['Frame'].max() / max_seconds), df['Frame'].max(), max_seconds)
|
| 416 |
+
for s in tick_locations]
|
| 417 |
+
|
| 418 |
+
ax.set_xticks(tick_locations)
|
| 419 |
+
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)
|
| 420 |
|
| 421 |
ax.set_xlabel('Time')
|
| 422 |
+
ax.set_ylabel('Mean Squared Error')
|
| 423 |
+
ax.set_title(title)
|
| 424 |
|
| 425 |
ax.grid(True, linestyle='--', alpha=0.7)
|
| 426 |
plt.tight_layout()
|
|
|
|
| 454 |
cv2.imwrite(output_path, small_face)
|
| 455 |
face_samples["others"].append(output_path)
|
| 456 |
return face_samples
|
| 457 |
+
|
| 458 |
+
def process_video(video_path, desired_fps, batch_size, progress=gr.Progress()):
|
| 459 |
output_folder = "output"
|
| 460 |
os.makedirs(output_folder, exist_ok=True)
|
| 461 |
|
| 462 |
+
# Initialize plot variables
|
| 463 |
+
mse_plot_all = None
|
| 464 |
+
mse_plot_comp = None
|
| 465 |
+
mse_plot_raw = None
|
| 466 |
+
emotion_plots = [None] * 6 # For the 6 emotions
|
| 467 |
+
face_samples = {"most_frequent": [], "others": []}
|
| 468 |
+
|
| 469 |
with tempfile.TemporaryDirectory() as temp_dir:
|
| 470 |
aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces')
|
| 471 |
organized_faces_folder = os.path.join(temp_dir, 'organized_faces')
|
|
|
|
| 492 |
|
| 493 |
if not aligned_face_paths:
|
| 494 |
return ("No faces were extracted from the video.",
|
| 495 |
+
None, None, None, None, None, None, None, None, None, [], [])
|
| 496 |
|
| 497 |
progress(0.6, "Clustering faces")
|
| 498 |
embeddings = [embedding for _, embedding in embeddings_by_frame.items()]
|
|
|
|
| 504 |
|
| 505 |
progress(0.8, "Saving person data")
|
| 506 |
df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps,
|
| 507 |
+
original_fps, temp_dir, video_duration)
|
| 508 |
|
| 509 |
progress(0.85, "Getting face samples")
|
| 510 |
face_samples = get_all_face_samples(organized_faces_folder, output_folder, largest_cluster)
|
|
|
|
| 512 |
progress(0.9, "Performing anomaly detection")
|
| 513 |
feature_columns = [col for col in df.columns if
|
| 514 |
col not in ['Frame', 'Timecode', 'Time (Minutes)', 'Embedding_Index']]
|
| 515 |
+
raw_embedding_columns = [col for col in df.columns if col.startswith('Raw_Embedding_')]
|
| 516 |
X = df[feature_columns].values
|
| 517 |
|
| 518 |
try:
|
| 519 |
+
mse_all, mse_comp, mse_raw = lstm_anomaly_detection(
|
| 520 |
+
X, feature_columns, raw_embedding_columns, batch_size=batch_size)
|
|
|
|
|
|
|
|
|
|
| 521 |
|
| 522 |
+
progress(0.95, "Generating plots")
|
| 523 |
+
mse_plot_all = plot_mse(df, mse_all, "Facial Features + Emotions", color='blue', hide_first_n=3)
|
| 524 |
+
mse_plot_comp = plot_mse(df, mse_comp, "Facial Features", color='deepskyblue', hide_first_n=3)
|
| 525 |
+
mse_plot_raw = plot_mse(df, mse_raw, "Facial Embeddings", color='steelblue', hide_first_n=3)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 526 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 527 |
emotion_plots = [
|
| 528 |
+
plot_mse(df, embedding_anomaly_detection(df[emotion].values.reshape(-1, 1)),
|
| 529 |
+
f"MSE: {emotion.capitalize()}", color=color, hide_first_n=3)
|
|
|
|
|
|
|
|
|
|
| 530 |
for emotion, color in zip(['fear', 'sad', 'angry', 'happy', 'surprise', 'neutral'],
|
| 531 |
['purple', 'green', 'orange', 'darkblue', 'gold', 'grey'])
|
| 532 |
]
|
| 533 |
+
|
| 534 |
except Exception as e:
|
| 535 |
+
print(f"Error details: {str(e)}")
|
| 536 |
+
return (f"Error in anomaly detection: {str(e)}",
|
| 537 |
+
None, None, None, None, None, None, None, None, None, [], [])
|
| 538 |
|
| 539 |
progress(1.0, "Preparing results")
|
| 540 |
results = f"Number of persons/clusters detected: {num_clusters}\n\n"
|
|
|
|
| 542 |
for cluster_id in range(num_clusters):
|
| 543 |
results += f"Person/Cluster {cluster_id + 1}: {len([c for c in clusters if c == cluster_id])} frames\n"
|
| 544 |
|
|
|
|
| 545 |
return (
|
| 546 |
results,
|
| 547 |
+
mse_plot_all,
|
| 548 |
+
mse_plot_comp,
|
| 549 |
+
mse_plot_raw,
|
| 550 |
*emotion_plots,
|
| 551 |
face_samples["most_frequent"],
|
| 552 |
face_samples["others"]
|
| 553 |
)
|
| 554 |
|
| 555 |
+
# Define gallery outputs
|
| 556 |
gallery_outputs = [
|
| 557 |
gr.Gallery(label="Most Frequent Person Random Samples", columns=5, rows=2, height="auto"),
|
| 558 |
gr.Gallery(label="Other Persons Random Samples", columns=5, rows=1, height="auto")
|
| 559 |
]
|
| 560 |
|
| 561 |
+
# Update the Gradio interface
|
| 562 |
iface = gr.Interface(
|
| 563 |
fn=process_video,
|
| 564 |
inputs=[
|
| 565 |
gr.Video(),
|
|
|
|
| 566 |
gr.Slider(minimum=1, maximum=20, step=1, value=10, label="Desired FPS"),
|
| 567 |
gr.Slider(minimum=1, maximum=32, step=1, value=8, label="Batch Size")
|
| 568 |
],
|
| 569 |
outputs=[
|
| 570 |
gr.Textbox(label="Anomaly Detection Results"),
|
| 571 |
+
gr.Plot(label="MSE: Facial Features + Emotions"),
|
| 572 |
+
gr.Plot(label="MSE: Facial Features (UMAP)"),
|
| 573 |
+
gr.Plot(label="MSE: Raw Facial Embeddings"),
|
| 574 |
+
gr.Plot(label="MSE: Fear"),
|
| 575 |
+
gr.Plot(label="MSE: Sad"),
|
| 576 |
+
gr.Plot(label="MSE: Angry"),
|
| 577 |
+
gr.Plot(label="MSE: Happy"),
|
| 578 |
+
gr.Plot(label="MSE: Surprise"),
|
| 579 |
+
gr.Plot(label="MSE: Neutral"),
|
| 580 |
] + gallery_outputs,
|
| 581 |
title="Facial Expressions Anomaly Detection",
|
| 582 |
description="""
|
| 583 |
This application detects anomalies in facial expressions and emotions from a video input.
|
| 584 |
It identifies distinct persons in the video and provides sample faces for each, with multiple samples for the most frequent person.
|
| 585 |
|
| 586 |
+
The graphs show Mean Squared Error (MSE) values for different aspects of facial expressions and emotions over time.
|
| 587 |
+
Each point represents a frame, with red points indicating detected anomalies.
|
| 588 |
+
Anomalies are annotated with their corresponding timecodes.
|
| 589 |
+
Higher MSE values indicate more unusual or anomalous expressions or emotions at that point in the video.
|
| 590 |
+
|
| 591 |
Adjust the parameters as needed:
|
|
|
|
| 592 |
- Desired FPS: Frames per second to analyze (lower for faster processing)
|
| 593 |
- Batch Size: Affects processing speed and memory usage
|
|
|
|
|
|
|
| 594 |
""",
|
| 595 |
allow_flagging="never"
|
| 596 |
)
|
| 597 |
|
| 598 |
+
# Launch the interface
|
| 599 |
+
iface.launch()
|