Update app.py
Browse files
app.py
CHANGED
@@ -382,6 +382,19 @@ def process_video(video_path, num_anomalies, num_components, desired_fps, batch_
|
|
382 |
progress(0.8, "Saving person data")
|
383 |
df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, temp_dir, num_components)
|
384 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
385 |
progress(0.95, "Generating plots")
|
386 |
try:
|
387 |
anomaly_plot_all = plot_anomaly_scores(df, anomaly_scores_all, top_indices_all, "All Features")
|
@@ -393,18 +406,6 @@ def process_video(video_path, num_anomalies, num_components, desired_fps, batch_
|
|
393 |
]
|
394 |
except Exception as e:
|
395 |
return f"Error generating plots: {str(e)}", None, None, None, None, None, None
|
396 |
-
|
397 |
-
progress(0.95, "Generating plots")
|
398 |
-
try:
|
399 |
-
anomaly_plot_all = plot_anomaly_scores(df, anomaly_scores_all, top_indices_all, "All Features")
|
400 |
-
anomaly_plot_comp = plot_anomaly_scores(df, anomaly_scores_comp, top_indices_comp, "Components Only")
|
401 |
-
emotion_plots = [
|
402 |
-
plot_emotion(df, 'fear', num_anomalies, 'lightblue'),
|
403 |
-
plot_emotion(df, 'sad', num_anomalies, 'lightgreen'),
|
404 |
-
plot_emotion(df, 'angry', num_anomalies, 'salmon')
|
405 |
-
]
|
406 |
-
except Exception as e:
|
407 |
-
return f"Error generating plots: {str(e)}", None, None, None, None, None, None
|
408 |
|
409 |
# Get a random face sample
|
410 |
face_sample = get_random_face_sample(organized_faces_folder, largest_cluster, output_folder)
|
|
|
382 |
progress(0.8, "Saving person data")
|
383 |
df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, temp_dir, num_components)
|
384 |
|
385 |
+
progress(0.9, "Performing anomaly detection")
|
386 |
+
feature_columns = [col for col in df.columns if col not in ['Frame', 'Timecode', 'Time (Minutes)', 'Embedding_Index']]
|
387 |
+
X = df[feature_columns].values
|
388 |
+
print(f"Shape of input data: {X.shape}")
|
389 |
+
print(f"Feature columns: {feature_columns}")
|
390 |
+
try:
|
391 |
+
anomalies_all, anomaly_scores_all, top_indices_all, anomalies_comp, anomaly_scores_comp, top_indices_comp, _ = lstm_anomaly_detection(X, feature_columns, num_anomalies=num_anomalies, batch_size=batch_size)
|
392 |
+
except Exception as e:
|
393 |
+
print(f"Error details: {str(e)}")
|
394 |
+
print(f"X shape: {X.shape}")
|
395 |
+
print(f"X dtype: {X.dtype}")
|
396 |
+
return f"Error in anomaly detection: {str(e)}", None, None, None, None, None, None
|
397 |
+
|
398 |
progress(0.95, "Generating plots")
|
399 |
try:
|
400 |
anomaly_plot_all = plot_anomaly_scores(df, anomaly_scores_all, top_indices_all, "All Features")
|
|
|
406 |
]
|
407 |
except Exception as e:
|
408 |
return f"Error generating plots: {str(e)}", None, None, None, None, None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
409 |
|
410 |
# Get a random face sample
|
411 |
face_sample = get_random_face_sample(organized_faces_folder, largest_cluster, output_folder)
|