reab5555 commited on
Commit
5fcde85
·
verified ·
1 Parent(s): 0702c36

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +46 -126
app.py CHANGED
@@ -101,12 +101,7 @@ def extract_frames(video_path, output_folder, fps):
101
  print(f"FFmpeg stderr: {e.stderr}")
102
  raise
103
 
104
- def extract_and_align_faces_from_video(video_path, aligned_faces_folder, desired_fps, progress=gr.Progress()):
105
- print(f"Processing video: {video_path}")
106
-
107
- frames_folder = os.path.join(os.path.dirname(aligned_faces_folder), 'extracted_frames')
108
- extract_frames(video_path, frames_folder, desired_fps)
109
-
110
  ffprobe_command = [
111
  'ffprobe',
112
  '-v', 'error',
@@ -116,63 +111,42 @@ def extract_and_align_faces_from_video(video_path, aligned_faces_folder, desired
116
  '-of', 'csv=p=0',
117
  video_path
118
  ]
119
- try:
120
- ffprobe_output = subprocess.check_output(ffprobe_command, universal_newlines=True).strip().split(',')
121
- print(f"FFprobe output: {ffprobe_output}")
122
-
123
- if len(ffprobe_output) != 2:
124
- raise ValueError(f"Unexpected FFprobe output format: {ffprobe_output}")
125
-
126
- frame_rate, frame_count = ffprobe_output
127
-
128
- print(f"Frame count (raw): {frame_count}")
129
- print(f"Frame rate (raw): {frame_rate}")
130
-
131
- try:
132
- frac = fractions.Fraction(frame_rate)
133
- original_fps = float(frac.numerator) / float(frac.denominator)
134
- except (ValueError, ZeroDivisionError):
135
- print(f"Warning: Could not convert frame rate '{frame_rate}' to float. Using fallback method.")
136
- duration_command = ['ffprobe', '-v', 'error', '-show_entries', 'format=duration', '-of', 'default=noprint_wrappers=1:nokey=1', video_path]
137
- duration = float(subprocess.check_output(duration_command, universal_newlines=True).strip())
138
- original_fps = int(frame_count) / duration
139
-
140
- frame_count = int(frame_count)
141
-
142
- except subprocess.CalledProcessError as e:
143
- print(f"Error running FFprobe: {e}")
144
- raise
145
- except Exception as e:
146
- print(f"Unexpected error processing video info: {e}")
147
- raise
148
-
149
- print(f"Total frames: {frame_count}, Original FPS: {original_fps}, Desired FPS: {desired_fps}")
150
 
 
151
  embeddings_by_frame = {}
152
  emotions_by_frame = {}
153
-
154
- for i, frame_file in enumerate(sorted(os.listdir(frames_folder))):
155
- if frame_file.endswith('.jpg'):
 
 
 
 
 
156
  frame_num = int(frame_file.split('_')[1].split('.')[0])
157
  frame_path = os.path.join(frames_folder, frame_file)
158
  frame = cv2.imread(frame_path)
 
 
 
 
 
 
 
159
 
160
- progress((i + 1) / len(os.listdir(frames_folder)), f"Processing frame {i + 1} of {len(os.listdir(frames_folder))}")
161
-
162
- if frame is None:
163
- print(f"Skipping frame {frame_num}: Could not read frame")
164
- continue
165
-
166
- try:
167
- boxes, probs = mtcnn.detect(frame)
168
- if boxes is not None and len(boxes) > 0:
169
- box = boxes[0]
170
- if probs[0] >= 0.99:
171
- x1, y1, x2, y2 = [int(b) for b in box]
172
- face = frame[y1:y2, x1:x2]
173
- if face.size == 0:
174
- print(f"Skipping frame {frame_num}: Detected face region is empty")
175
- continue
176
  aligned_face = alignFace(face)
177
  if aligned_face is not None:
178
  aligned_face_resized = cv2.resize(aligned_face, (160, 160))
@@ -181,11 +155,10 @@ def extract_and_align_faces_from_video(video_path, aligned_faces_folder, desired
181
  embedding, emotion = get_face_embedding_and_emotion(aligned_face_resized)
182
  embeddings_by_frame[frame_num] = embedding
183
  emotions_by_frame[frame_num] = emotion
184
- except Exception as e:
185
- print(f"Error processing frame {frame_num}: {str(e)}")
186
- continue
187
 
188
- return embeddings_by_frame, emotions_by_frame, desired_fps, original_fps
189
 
190
  def cluster_embeddings(embeddings):
191
  if len(embeddings) < 2:
@@ -273,7 +246,9 @@ def lstm_anomaly_detection(X, feature_columns, num_anomalies=10, epochs=100, bat
273
 
274
  # Ensure X is 2D
275
  if X.dim() == 1:
276
- X = X.unsqueeze(0)
 
 
277
 
278
  train_size = int(0.85 * len(X))
279
  X_train, X_val = X[:train_size], X[train_size:]
@@ -310,7 +285,10 @@ def lstm_anomaly_detection(X, feature_columns, num_anomalies=10, epochs=100, bat
310
  component_indices = [feature_columns.index(col) for col in component_columns]
311
 
312
  if len(component_indices) > 0:
313
- mse_comp = np.mean(np.power(X.cpu().numpy()[:, component_indices] - reconstructed[:, component_indices], 2), axis=1)
 
 
 
314
  else:
315
  mse_comp = mse_all # If no components, use all features
316
 
@@ -319,8 +297,8 @@ def lstm_anomaly_detection(X, feature_columns, num_anomalies=10, epochs=100, bat
319
  anomalies_comp[top_indices_comp] = True
320
 
321
  return (anomalies_all, mse_all, top_indices_all,
322
- anomalies_comp, mse_comp, top_indices_comp,
323
- model)
324
 
325
  def plot_anomaly_scores(df, anomaly_scores, top_indices, title):
326
  fig, ax = plt.subplots(figsize=(16, 8))
@@ -379,7 +357,7 @@ def process_video(video_path, num_anomalies, num_components, desired_fps, batch_
379
  frame_count, original_fps = get_video_info(video_path)
380
 
381
  progress(0.3, "Processing frames")
382
- embeddings_by_frame, emotions_by_frame = process_frames(frames_folder, aligned_faces_folder, frame_count, progress)
383
 
384
  if not embeddings_by_frame:
385
  return "No faces were extracted from the video.", None, None, None, None, None, None
@@ -396,8 +374,10 @@ def process_video(video_path, num_anomalies, num_components, desired_fps, batch_
396
 
397
  progress(0.9, "Performing anomaly detection")
398
  feature_columns = [col for col in df.columns if col not in ['Frame', 'Timecode', 'Time (Minutes)', 'Embedding_Index']]
 
 
399
  try:
400
- anomalies_all, anomaly_scores_all, top_indices_all, anomalies_comp, anomaly_scores_comp, top_indices_comp, _ = lstm_anomaly_detection(df[feature_columns].values, feature_columns, num_anomalies=num_anomalies, batch_size=batch_size)
401
  except Exception as e:
402
  return f"Error in anomaly detection: {str(e)}", None, None, None, None, None, None
403
 
@@ -425,65 +405,6 @@ def process_video(video_path, num_anomalies, num_components, desired_fps, batch_
425
 
426
  return results, anomaly_plot_all, anomaly_plot_comp, components_plot, *emotion_plots
427
 
428
- def get_video_info(video_path):
429
- ffprobe_command = [
430
- 'ffprobe',
431
- '-v', 'error',
432
- '-select_streams', 'v:0',
433
- '-count_packets',
434
- '-show_entries', 'stream=nb_read_packets,r_frame_rate',
435
- '-of', 'csv=p=0',
436
- video_path
437
- ]
438
- ffprobe_output = subprocess.check_output(ffprobe_command, universal_newlines=True).strip().split(',')
439
- frame_rate, frame_count = ffprobe_output
440
-
441
- frac = fractions.Fraction(frame_rate)
442
- original_fps = float(frac.numerator) / float(frac.denominator)
443
- frame_count = int(frame_count)
444
-
445
- return frame_count, original_fps
446
-
447
- def process_frames(frames_folder, aligned_faces_folder, frame_count, progress):
448
- embeddings_by_frame = {}
449
- emotions_by_frame = {}
450
-
451
- for i, frame_file in enumerate(sorted(os.listdir(frames_folder))):
452
- if frame_file.endswith('.jpg'):
453
- frame_num = int(frame_file.split('_')[1].split('.')[0])
454
- frame_path = os.path.join(frames_folder, frame_file)
455
- frame = cv2.imread(frame_path)
456
-
457
- progress((i + 1) / frame_count, f"Processing frame {i + 1} of {frame_count}")
458
-
459
- if frame is None:
460
- print(f"Skipping frame {frame_num}: Could not read frame")
461
- continue
462
-
463
- try:
464
- boxes, probs = mtcnn.detect(frame)
465
- if boxes is not None and len(boxes) > 0:
466
- box = boxes[0]
467
- if probs[0] >= 0.99:
468
- x1, y1, x2, y2 = [int(b) for b in box]
469
- face = frame[y1:y2, x1:x2]
470
- if face.size == 0:
471
- print(f"Skipping frame {frame_num}: Detected face region is empty")
472
- continue
473
- aligned_face = alignFace(face)
474
- if aligned_face is not None:
475
- aligned_face_resized = cv2.resize(aligned_face, (160, 160))
476
- output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
477
- cv2.imwrite(output_path, aligned_face_resized)
478
- embedding, emotion = get_face_embedding_and_emotion(aligned_face_resized)
479
- embeddings_by_frame[frame_num] = embedding
480
- emotions_by_frame[frame_num] = emotion
481
- except Exception as e:
482
- print(f"Error processing frame {frame_num}: {str(e)}")
483
- continue
484
-
485
- return embeddings_by_frame, emotions_by_frame
486
-
487
  # Gradio interface
488
  iface = gr.Interface(
489
  fn=process_video,
@@ -513,7 +434,6 @@ iface = gr.Interface(
513
  - Number of Components: Complexity of the facial expression model
514
  - Desired FPS: Frames per second to analyze (lower for faster processing)
515
  - Batch Size: Affects processing speed and memory usage
516
-
517
  """
518
  )
519
 
 
101
  print(f"FFmpeg stderr: {e.stderr}")
102
  raise
103
 
104
+ def get_video_info(video_path):
 
 
 
 
 
105
  ffprobe_command = [
106
  'ffprobe',
107
  '-v', 'error',
 
111
  '-of', 'csv=p=0',
112
  video_path
113
  ]
114
+ ffprobe_output = subprocess.check_output(ffprobe_command, universal_newlines=True).strip().split(',')
115
+ frame_rate, frame_count = ffprobe_output
116
+
117
+ frac = fractions.Fraction(frame_rate)
118
+ original_fps = float(frac.numerator) / float(frac.denominator)
119
+ frame_count = int(frame_count)
120
+
121
+ return frame_count, original_fps
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122
 
123
+ def process_frames(frames_folder, aligned_faces_folder, frame_count, progress, batch_size):
124
  embeddings_by_frame = {}
125
  emotions_by_frame = {}
126
+ frame_files = sorted([f for f in os.listdir(frames_folder) if f.endswith('.jpg')])
127
+
128
+ for i in range(0, len(frame_files), batch_size):
129
+ batch_files = frame_files[i:i+batch_size]
130
+ batch_frames = []
131
+ batch_nums = []
132
+
133
+ for frame_file in batch_files:
134
  frame_num = int(frame_file.split('_')[1].split('.')[0])
135
  frame_path = os.path.join(frames_folder, frame_file)
136
  frame = cv2.imread(frame_path)
137
+ if frame is not None:
138
+ batch_frames.append(frame)
139
+ batch_nums.append(frame_num)
140
+
141
+ if batch_frames:
142
+ # Detect faces in batch
143
+ batch_boxes, batch_probs = mtcnn.detect(batch_frames)
144
 
145
+ for j, (frame, frame_num, boxes, probs) in enumerate(zip(batch_frames, batch_nums, batch_boxes, batch_probs)):
146
+ if boxes is not None and len(boxes) > 0 and probs[0] >= 0.99:
147
+ x1, y1, x2, y2 = [int(b) for b in boxes[0]]
148
+ face = frame[y1:y2, x1:x2]
149
+ if face.size > 0:
 
 
 
 
 
 
 
 
 
 
 
150
  aligned_face = alignFace(face)
151
  if aligned_face is not None:
152
  aligned_face_resized = cv2.resize(aligned_face, (160, 160))
 
155
  embedding, emotion = get_face_embedding_and_emotion(aligned_face_resized)
156
  embeddings_by_frame[frame_num] = embedding
157
  emotions_by_frame[frame_num] = emotion
158
+
159
+ progress((i + len(batch_files)) / frame_count, f"Processing frames {i + 1} to {min(i + len(batch_files), frame_count)} of {frame_count}")
 
160
 
161
+ return embeddings_by_frame, emotions_by_frame
162
 
163
  def cluster_embeddings(embeddings):
164
  if len(embeddings) < 2:
 
246
 
247
  # Ensure X is 2D
248
  if X.dim() == 1:
249
+ X = X.unsqueeze(1) # Add a feature dimension
250
+ elif X.dim() > 2:
251
+ raise ValueError(f"Input X should be 1D or 2D, but got {X.dim()} dimensions")
252
 
253
  train_size = int(0.85 * len(X))
254
  X_train, X_val = X[:train_size], X[train_size:]
 
285
  component_indices = [feature_columns.index(col) for col in component_columns]
286
 
287
  if len(component_indices) > 0:
288
+ if X.dim() == 1:
289
+ mse_comp = mse_all # If X is 1D, we can't select specific components
290
+ else:
291
+ mse_comp = np.mean(np.power(X.cpu().numpy()[:, component_indices] - reconstructed[:, component_indices], 2), axis=1)
292
  else:
293
  mse_comp = mse_all # If no components, use all features
294
 
 
297
  anomalies_comp[top_indices_comp] = True
298
 
299
  return (anomalies_all, mse_all, top_indices_all,
300
+ anomalies_comp, mse_comp, top_indices_comp,
301
+ model)
302
 
303
  def plot_anomaly_scores(df, anomaly_scores, top_indices, title):
304
  fig, ax = plt.subplots(figsize=(16, 8))
 
357
  frame_count, original_fps = get_video_info(video_path)
358
 
359
  progress(0.3, "Processing frames")
360
+ embeddings_by_frame, emotions_by_frame = process_frames(frames_folder, aligned_faces_folder, frame_count, progress, batch_size)
361
 
362
  if not embeddings_by_frame:
363
  return "No faces were extracted from the video.", None, None, None, None, None, None
 
374
 
375
  progress(0.9, "Performing anomaly detection")
376
  feature_columns = [col for col in df.columns if col not in ['Frame', 'Timecode', 'Time (Minutes)', 'Embedding_Index']]
377
+ X = df[feature_columns].values
378
+ print(f"Shape of input data: {X.shape}") # Debug print
379
  try:
380
+ anomalies_all, anomaly_scores_all, top_indices_all, anomalies_comp, anomaly_scores_comp, top_indices_comp, _ = lstm_anomaly_detection(X, feature_columns, num_anomalies=num_anomalies, batch_size=batch_size)
381
  except Exception as e:
382
  return f"Error in anomaly detection: {str(e)}", None, None, None, None, None, None
383
 
 
405
 
406
  return results, anomaly_plot_all, anomaly_plot_comp, components_plot, *emotion_plots
407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408
  # Gradio interface
409
  iface = gr.Interface(
410
  fn=process_video,
 
434
  - Number of Components: Complexity of the facial expression model
435
  - Desired FPS: Frames per second to analyze (lower for faster processing)
436
  - Batch Size: Affects processing speed and memory usage
 
437
  """
438
  )
439