Update app.py
Browse files
app.py
CHANGED
@@ -271,10 +271,14 @@ def lstm_anomaly_detection(X, feature_columns, num_anomalies=10, epochs=100, bat
|
|
271 |
|
272 |
X = torch.FloatTensor(X).to(device)
|
273 |
|
|
|
|
|
|
|
|
|
274 |
train_size = int(0.85 * len(X))
|
275 |
X_train, X_val = X[:train_size], X[train_size:]
|
276 |
|
277 |
-
model = LSTMAutoencoder(input_size=
|
278 |
criterion = nn.MSELoss()
|
279 |
optimizer = optim.Adam(model.parameters())
|
280 |
|
@@ -295,7 +299,7 @@ def lstm_anomaly_detection(X, feature_columns, num_anomalies=10, epochs=100, bat
|
|
295 |
with torch.no_grad():
|
296 |
reconstructed = model(X.unsqueeze(0)).squeeze(0).cpu().numpy()
|
297 |
|
298 |
-
# Compute anomalies for all features
|
299 |
mse_all = np.mean(np.power(X.cpu().numpy() - reconstructed, 2), axis=1)
|
300 |
top_indices_all = mse_all.argsort()[-num_anomalies:][::-1]
|
301 |
anomalies_all = np.zeros(len(mse_all), dtype=bool)
|
@@ -304,7 +308,12 @@ def lstm_anomaly_detection(X, feature_columns, num_anomalies=10, epochs=100, bat
|
|
304 |
# Compute anomalies for components only
|
305 |
component_columns = [col for col in feature_columns if col.startswith('Comp')]
|
306 |
component_indices = [feature_columns.index(col) for col in component_columns]
|
307 |
-
|
|
|
|
|
|
|
|
|
|
|
308 |
top_indices_comp = mse_comp.argsort()[-num_anomalies:][::-1]
|
309 |
anomalies_comp = np.zeros(len(mse_comp), dtype=bool)
|
310 |
anomalies_comp[top_indices_comp] = True
|
|
|
271 |
|
272 |
X = torch.FloatTensor(X).to(device)
|
273 |
|
274 |
+
# Ensure X is 2D
|
275 |
+
if X.dim() == 1:
|
276 |
+
X = X.unsqueeze(0)
|
277 |
+
|
278 |
train_size = int(0.85 * len(X))
|
279 |
X_train, X_val = X[:train_size], X[train_size:]
|
280 |
|
281 |
+
model = LSTMAutoencoder(input_size=X.shape[1]).to(device)
|
282 |
criterion = nn.MSELoss()
|
283 |
optimizer = optim.Adam(model.parameters())
|
284 |
|
|
|
299 |
with torch.no_grad():
|
300 |
reconstructed = model(X.unsqueeze(0)).squeeze(0).cpu().numpy()
|
301 |
|
302 |
+
# Compute anomalies for all features
|
303 |
mse_all = np.mean(np.power(X.cpu().numpy() - reconstructed, 2), axis=1)
|
304 |
top_indices_all = mse_all.argsort()[-num_anomalies:][::-1]
|
305 |
anomalies_all = np.zeros(len(mse_all), dtype=bool)
|
|
|
308 |
# Compute anomalies for components only
|
309 |
component_columns = [col for col in feature_columns if col.startswith('Comp')]
|
310 |
component_indices = [feature_columns.index(col) for col in component_columns]
|
311 |
+
|
312 |
+
if len(component_indices) > 0:
|
313 |
+
mse_comp = np.mean(np.power(X.cpu().numpy()[:, component_indices] - reconstructed[:, component_indices], 2), axis=1)
|
314 |
+
else:
|
315 |
+
mse_comp = mse_all # If no components, use all features
|
316 |
+
|
317 |
top_indices_comp = mse_comp.argsort()[-num_anomalies:][::-1]
|
318 |
anomalies_comp = np.zeros(len(mse_comp), dtype=bool)
|
319 |
anomalies_comp[top_indices_comp] = True
|