reab5555 commited on
Commit
0702c36
·
verified ·
1 Parent(s): 1848c43

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -3
app.py CHANGED
@@ -271,10 +271,14 @@ def lstm_anomaly_detection(X, feature_columns, num_anomalies=10, epochs=100, bat
271
 
272
  X = torch.FloatTensor(X).to(device)
273
 
 
 
 
 
274
  train_size = int(0.85 * len(X))
275
  X_train, X_val = X[:train_size], X[train_size:]
276
 
277
- model = LSTMAutoencoder(input_size=len(feature_columns)).to(device)
278
  criterion = nn.MSELoss()
279
  optimizer = optim.Adam(model.parameters())
280
 
@@ -295,7 +299,7 @@ def lstm_anomaly_detection(X, feature_columns, num_anomalies=10, epochs=100, bat
295
  with torch.no_grad():
296
  reconstructed = model(X.unsqueeze(0)).squeeze(0).cpu().numpy()
297
 
298
- # Compute anomalies for all features
299
  mse_all = np.mean(np.power(X.cpu().numpy() - reconstructed, 2), axis=1)
300
  top_indices_all = mse_all.argsort()[-num_anomalies:][::-1]
301
  anomalies_all = np.zeros(len(mse_all), dtype=bool)
@@ -304,7 +308,12 @@ def lstm_anomaly_detection(X, feature_columns, num_anomalies=10, epochs=100, bat
304
  # Compute anomalies for components only
305
  component_columns = [col for col in feature_columns if col.startswith('Comp')]
306
  component_indices = [feature_columns.index(col) for col in component_columns]
307
- mse_comp = np.mean(np.power(X.cpu().numpy()[:, component_indices] - reconstructed[:, component_indices], 2), axis=1)
 
 
 
 
 
308
  top_indices_comp = mse_comp.argsort()[-num_anomalies:][::-1]
309
  anomalies_comp = np.zeros(len(mse_comp), dtype=bool)
310
  anomalies_comp[top_indices_comp] = True
 
271
 
272
  X = torch.FloatTensor(X).to(device)
273
 
274
+ # Ensure X is 2D
275
+ if X.dim() == 1:
276
+ X = X.unsqueeze(0)
277
+
278
  train_size = int(0.85 * len(X))
279
  X_train, X_val = X[:train_size], X[train_size:]
280
 
281
+ model = LSTMAutoencoder(input_size=X.shape[1]).to(device)
282
  criterion = nn.MSELoss()
283
  optimizer = optim.Adam(model.parameters())
284
 
 
299
  with torch.no_grad():
300
  reconstructed = model(X.unsqueeze(0)).squeeze(0).cpu().numpy()
301
 
302
+ # Compute anomalies for all features
303
  mse_all = np.mean(np.power(X.cpu().numpy() - reconstructed, 2), axis=1)
304
  top_indices_all = mse_all.argsort()[-num_anomalies:][::-1]
305
  anomalies_all = np.zeros(len(mse_all), dtype=bool)
 
308
  # Compute anomalies for components only
309
  component_columns = [col for col in feature_columns if col.startswith('Comp')]
310
  component_indices = [feature_columns.index(col) for col in component_columns]
311
+
312
+ if len(component_indices) > 0:
313
+ mse_comp = np.mean(np.power(X.cpu().numpy()[:, component_indices] - reconstructed[:, component_indices], 2), axis=1)
314
+ else:
315
+ mse_comp = mse_all # If no components, use all features
316
+
317
  top_indices_comp = mse_comp.argsort()[-num_anomalies:][::-1]
318
  anomalies_comp = np.zeros(len(mse_comp), dtype=bool)
319
  anomalies_comp[top_indices_comp] = True