reab5555 commited on
Commit
1848c43
·
verified ·
1 Parent(s): 9de451e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +74 -13
app.py CHANGED
@@ -362,33 +362,37 @@ def process_video(video_path, num_anomalies, num_components, desired_fps, batch_
362
  os.makedirs(aligned_faces_folder, exist_ok=True)
363
  os.makedirs(organized_faces_folder, exist_ok=True)
364
 
365
- progress(0.1, "Extracting and aligning faces")
366
- try:
367
- embeddings_by_frame, emotions_by_frame, _, original_fps = extract_and_align_faces_from_video(video_path, aligned_faces_folder, desired_fps, progress)
368
- except Exception as e:
369
- return f"Error extracting faces: {str(e)}", None, None, None, None, None, None
 
 
 
 
370
 
371
  if not embeddings_by_frame:
372
  return "No faces were extracted from the video.", None, None, None, None, None, None
373
 
374
- progress(0.3, "Clustering embeddings")
375
  embeddings = list(embeddings_by_frame.values())
376
  clusters = cluster_embeddings(embeddings)
377
 
378
- progress(0.4, "Organizing faces")
379
  organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder)
380
 
381
- progress(0.5, "Saving person data")
382
  df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, temp_dir, num_components)
383
 
384
- progress(0.6, "Performing anomaly detection")
385
  feature_columns = [col for col in df.columns if col not in ['Frame', 'Timecode', 'Time (Minutes)', 'Embedding_Index']]
386
  try:
387
  anomalies_all, anomaly_scores_all, top_indices_all, anomalies_comp, anomaly_scores_comp, top_indices_comp, _ = lstm_anomaly_detection(df[feature_columns].values, feature_columns, num_anomalies=num_anomalies, batch_size=batch_size)
388
  except Exception as e:
389
  return f"Error in anomaly detection: {str(e)}", None, None, None, None, None, None
390
 
391
- progress(0.8, "Generating plots")
392
  try:
393
  anomaly_plot_all = plot_anomaly_scores(df, anomaly_scores_all, top_indices_all, "All Features")
394
  anomaly_plot_comp = plot_anomaly_scores(df, anomaly_scores_comp, top_indices_comp, "Components Only")
@@ -397,7 +401,7 @@ def process_video(video_path, num_anomalies, num_components, desired_fps, batch_
397
  except Exception as e:
398
  return f"Error generating plots: {str(e)}", None, None, None, None, None, None
399
 
400
- progress(0.9, "Preparing results")
401
  results = f"Top {num_anomalies} anomalies (All Features):\n"
402
  results += "\n".join([f"{score:.4f} at {timecode}" for score, timecode in
403
  zip(anomaly_scores_all[top_indices_all], df['Timecode'].iloc[top_indices_all].values)])
@@ -405,15 +409,72 @@ def process_video(video_path, num_anomalies, num_components, desired_fps, batch_
405
  results += "\n".join([f"{score:.4f} at {timecode}" for score, timecode in
406
  zip(anomaly_scores_comp[top_indices_comp], df['Timecode'].iloc[top_indices_comp].values)])
407
 
408
- # Add top emotion scores to results
409
  for emotion in ['fear', 'sad', 'angry']:
410
  top_indices = np.argsort(df[emotion].values)[-num_anomalies:][::-1]
411
  results += f"\n\nTop {num_anomalies} {emotion.capitalize()} Scores:\n"
412
  results += "\n".join([f"{df[emotion].iloc[i]:.4f} at {df['Timecode'].iloc[i]}" for i in top_indices])
413
 
414
- progress(1.0, "Complete")
415
  return results, anomaly_plot_all, anomaly_plot_comp, components_plot, *emotion_plots
416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
417
  # Gradio interface
418
  iface = gr.Interface(
419
  fn=process_video,
 
362
  os.makedirs(aligned_faces_folder, exist_ok=True)
363
  os.makedirs(organized_faces_folder, exist_ok=True)
364
 
365
+ progress(0.1, "Extracting frames")
366
+ frames_folder = os.path.join(temp_dir, 'extracted_frames')
367
+ extract_frames(video_path, frames_folder, desired_fps)
368
+
369
+ progress(0.2, "Getting video info")
370
+ frame_count, original_fps = get_video_info(video_path)
371
+
372
+ progress(0.3, "Processing frames")
373
+ embeddings_by_frame, emotions_by_frame = process_frames(frames_folder, aligned_faces_folder, frame_count, progress)
374
 
375
  if not embeddings_by_frame:
376
  return "No faces were extracted from the video.", None, None, None, None, None, None
377
 
378
+ progress(0.6, "Clustering embeddings")
379
  embeddings = list(embeddings_by_frame.values())
380
  clusters = cluster_embeddings(embeddings)
381
 
382
+ progress(0.7, "Organizing faces")
383
  organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder)
384
 
385
+ progress(0.8, "Saving person data")
386
  df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, temp_dir, num_components)
387
 
388
+ progress(0.9, "Performing anomaly detection")
389
  feature_columns = [col for col in df.columns if col not in ['Frame', 'Timecode', 'Time (Minutes)', 'Embedding_Index']]
390
  try:
391
  anomalies_all, anomaly_scores_all, top_indices_all, anomalies_comp, anomaly_scores_comp, top_indices_comp, _ = lstm_anomaly_detection(df[feature_columns].values, feature_columns, num_anomalies=num_anomalies, batch_size=batch_size)
392
  except Exception as e:
393
  return f"Error in anomaly detection: {str(e)}", None, None, None, None, None, None
394
 
395
+ progress(0.95, "Generating plots")
396
  try:
397
  anomaly_plot_all = plot_anomaly_scores(df, anomaly_scores_all, top_indices_all, "All Features")
398
  anomaly_plot_comp = plot_anomaly_scores(df, anomaly_scores_comp, top_indices_comp, "Components Only")
 
401
  except Exception as e:
402
  return f"Error generating plots: {str(e)}", None, None, None, None, None, None
403
 
404
+ progress(1.0, "Preparing results")
405
  results = f"Top {num_anomalies} anomalies (All Features):\n"
406
  results += "\n".join([f"{score:.4f} at {timecode}" for score, timecode in
407
  zip(anomaly_scores_all[top_indices_all], df['Timecode'].iloc[top_indices_all].values)])
 
409
  results += "\n".join([f"{score:.4f} at {timecode}" for score, timecode in
410
  zip(anomaly_scores_comp[top_indices_comp], df['Timecode'].iloc[top_indices_comp].values)])
411
 
 
412
  for emotion in ['fear', 'sad', 'angry']:
413
  top_indices = np.argsort(df[emotion].values)[-num_anomalies:][::-1]
414
  results += f"\n\nTop {num_anomalies} {emotion.capitalize()} Scores:\n"
415
  results += "\n".join([f"{df[emotion].iloc[i]:.4f} at {df['Timecode'].iloc[i]}" for i in top_indices])
416
 
 
417
  return results, anomaly_plot_all, anomaly_plot_comp, components_plot, *emotion_plots
418
 
419
+ def get_video_info(video_path):
420
+ ffprobe_command = [
421
+ 'ffprobe',
422
+ '-v', 'error',
423
+ '-select_streams', 'v:0',
424
+ '-count_packets',
425
+ '-show_entries', 'stream=nb_read_packets,r_frame_rate',
426
+ '-of', 'csv=p=0',
427
+ video_path
428
+ ]
429
+ ffprobe_output = subprocess.check_output(ffprobe_command, universal_newlines=True).strip().split(',')
430
+ frame_rate, frame_count = ffprobe_output
431
+
432
+ frac = fractions.Fraction(frame_rate)
433
+ original_fps = float(frac.numerator) / float(frac.denominator)
434
+ frame_count = int(frame_count)
435
+
436
+ return frame_count, original_fps
437
+
438
+ def process_frames(frames_folder, aligned_faces_folder, frame_count, progress):
439
+ embeddings_by_frame = {}
440
+ emotions_by_frame = {}
441
+
442
+ for i, frame_file in enumerate(sorted(os.listdir(frames_folder))):
443
+ if frame_file.endswith('.jpg'):
444
+ frame_num = int(frame_file.split('_')[1].split('.')[0])
445
+ frame_path = os.path.join(frames_folder, frame_file)
446
+ frame = cv2.imread(frame_path)
447
+
448
+ progress((i + 1) / frame_count, f"Processing frame {i + 1} of {frame_count}")
449
+
450
+ if frame is None:
451
+ print(f"Skipping frame {frame_num}: Could not read frame")
452
+ continue
453
+
454
+ try:
455
+ boxes, probs = mtcnn.detect(frame)
456
+ if boxes is not None and len(boxes) > 0:
457
+ box = boxes[0]
458
+ if probs[0] >= 0.99:
459
+ x1, y1, x2, y2 = [int(b) for b in box]
460
+ face = frame[y1:y2, x1:x2]
461
+ if face.size == 0:
462
+ print(f"Skipping frame {frame_num}: Detected face region is empty")
463
+ continue
464
+ aligned_face = alignFace(face)
465
+ if aligned_face is not None:
466
+ aligned_face_resized = cv2.resize(aligned_face, (160, 160))
467
+ output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
468
+ cv2.imwrite(output_path, aligned_face_resized)
469
+ embedding, emotion = get_face_embedding_and_emotion(aligned_face_resized)
470
+ embeddings_by_frame[frame_num] = embedding
471
+ emotions_by_frame[frame_num] = emotion
472
+ except Exception as e:
473
+ print(f"Error processing frame {frame_num}: {str(e)}")
474
+ continue
475
+
476
+ return embeddings_by_frame, emotions_by_frame
477
+
478
  # Gradio interface
479
  iface = gr.Interface(
480
  fn=process_video,