Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import os
|
2 |
import cv2
|
3 |
import numpy as np
|
@@ -5,38 +6,35 @@ import torch
|
|
5 |
import torch.nn as nn
|
6 |
import torch.optim as optim
|
7 |
from facenet_pytorch import InceptionResnetV1, MTCNN
|
|
|
8 |
import mediapipe as mp
|
9 |
from fer import FER
|
10 |
from sklearn.cluster import DBSCAN
|
11 |
-
from sklearn.preprocessing import MinMaxScaler
|
12 |
-
from sklearn.decomposition import PCA
|
13 |
-
import umap
|
14 |
import pandas as pd
|
15 |
import matplotlib
|
16 |
import matplotlib.pyplot as plt
|
|
|
17 |
from moviepy.editor import VideoFileClip
|
18 |
from PIL import Image
|
19 |
import gradio as gr
|
20 |
import tempfile
|
21 |
import shutil
|
22 |
-
import
|
23 |
-
|
24 |
-
print(torch.__version__)
|
25 |
-
print(torch.version.cuda)
|
26 |
|
27 |
matplotlib.rcParams['figure.dpi'] = 500
|
28 |
matplotlib.rcParams['savefig.dpi'] = 500
|
29 |
|
30 |
# Initialize models and other global variables
|
31 |
-
device = 'cuda'
|
32 |
|
33 |
-
mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.
|
34 |
model = InceptionResnetV1(pretrained='vggface2').eval().to(device)
|
35 |
mp_face_mesh = mp.solutions.face_mesh
|
36 |
-
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.
|
37 |
emotion_detector = FER(mtcnn=False)
|
38 |
|
39 |
-
|
40 |
def frame_to_timecode(frame_num, total_frames, duration):
|
41 |
total_seconds = (frame_num / total_frames) * duration
|
42 |
hours = int(total_seconds // 3600)
|
@@ -45,6 +43,15 @@ def frame_to_timecode(frame_num, total_frames, duration):
|
|
45 |
milliseconds = int((total_seconds - int(total_seconds)) * 1000)
|
46 |
return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}"
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
def get_face_embedding_and_emotion(face_img):
|
50 |
face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255
|
@@ -57,11 +64,10 @@ def get_face_embedding_and_emotion(face_img):
|
|
57 |
if emotions:
|
58 |
emotion_dict = emotions[0]['emotions']
|
59 |
else:
|
60 |
-
emotion_dict = {e: 0 for e in ['angry', 'disgust', 'fear', '
|
61 |
|
62 |
return embedding.cpu().numpy().flatten(), emotion_dict
|
63 |
|
64 |
-
|
65 |
def alignFace(img):
|
66 |
img_raw = img.copy()
|
67 |
results = face_mesh.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
@@ -87,7 +93,6 @@ def alignFace(img):
|
|
87 |
new_img = cv2.warpAffine(img_raw, rotation_matrix, (width, height))
|
88 |
return new_img
|
89 |
|
90 |
-
|
91 |
def extract_frames(video_path, output_folder, desired_fps, progress_callback=None):
|
92 |
os.makedirs(output_folder, exist_ok=True)
|
93 |
clip = VideoFileClip(video_path)
|
@@ -111,6 +116,19 @@ def extract_frames(video_path, output_folder, desired_fps, progress_callback=Non
|
|
111 |
clip.close()
|
112 |
return frame_count, original_fps
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
def process_frames(frames_folder, aligned_faces_folder, frame_count, progress, batch_size):
|
116 |
embeddings_by_frame = {}
|
@@ -140,29 +158,29 @@ def process_frames(frames_folder, aligned_faces_folder, frame_count, progress, b
|
|
140 |
x1, y1, x2, y2 = [int(b) for b in boxes[0]]
|
141 |
face = frame[y1:y2, x1:x2]
|
142 |
if face.size > 0:
|
143 |
-
|
144 |
-
if
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
155 |
|
156 |
return embeddings_by_frame, emotions_by_frame, aligned_face_paths
|
157 |
|
158 |
-
|
159 |
def cluster_faces(embeddings):
|
160 |
if len(embeddings) < 2:
|
161 |
print("Not enough faces for clustering. Assigning all to one cluster.")
|
162 |
return np.zeros(len(embeddings), dtype=int)
|
163 |
|
164 |
X = np.stack(embeddings)
|
165 |
-
|
166 |
dbscan = DBSCAN(eps=0.5, min_samples=5, metric='cosine')
|
167 |
clusters = dbscan.fit_predict(X)
|
168 |
|
@@ -172,7 +190,6 @@ def cluster_faces(embeddings):
|
|
172 |
|
173 |
return clusters
|
174 |
|
175 |
-
|
176 |
def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder):
|
177 |
for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters):
|
178 |
person_folder = os.path.join(organized_faces_folder, f"person_{cluster}")
|
@@ -181,39 +198,11 @@ def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder
|
|
181 |
dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg")
|
182 |
shutil.copy(src, dst)
|
183 |
|
184 |
-
|
185 |
-
|
186 |
-
pca = PCA(n_components=max_components)
|
187 |
-
pca.fit(embeddings)
|
188 |
-
|
189 |
-
explained_variance_ratio = pca.explained_variance_ratio_
|
190 |
-
cumulative_variance_ratio = np.cumsum(explained_variance_ratio)
|
191 |
-
|
192 |
-
# Plot explained variance ratio
|
193 |
-
plt.figure(figsize=(10, 6))
|
194 |
-
plt.plot(range(1, max_components + 1), cumulative_variance_ratio, 'bo-')
|
195 |
-
plt.xlabel('Number of Components')
|
196 |
-
plt.ylabel('Cumulative Explained Variance Ratio')
|
197 |
-
plt.title('Explained Variance Ratio vs. Number of Components')
|
198 |
-
plt.grid(True)
|
199 |
-
|
200 |
-
# Find elbow point
|
201 |
-
differences = np.diff(cumulative_variance_ratio)
|
202 |
-
elbow_point = np.argmin(differences) + 1
|
203 |
-
|
204 |
-
plt.axvline(x=elbow_point, color='r', linestyle='--', label=f'Elbow point: {elbow_point}')
|
205 |
-
plt.legend()
|
206 |
-
|
207 |
-
return elbow_point, plt
|
208 |
-
|
209 |
-
|
210 |
-
def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, output_folder,
|
211 |
-
video_duration):
|
212 |
-
emotions = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']
|
213 |
person_data = {}
|
214 |
|
215 |
-
for (frame_num, embedding), (_, emotion_dict), cluster in zip(embeddings_by_frame.items(),
|
216 |
-
emotions_by_frame.items(), clusters):
|
217 |
if cluster not in person_data:
|
218 |
person_data[cluster] = []
|
219 |
person_data[cluster].append((frame_num, embedding, {e: emotion_dict[e] for e in emotions}))
|
@@ -227,33 +216,18 @@ def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, de
|
|
227 |
embeddings_array = np.array(embeddings)
|
228 |
np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array)
|
229 |
|
230 |
-
# Find optimal number of components
|
231 |
-
optimal_components, _ = find_optimal_components(embeddings_array)
|
232 |
-
|
233 |
-
reducer = umap.UMAP(n_components=optimal_components, random_state=1)
|
234 |
-
embeddings_reduced = reducer.fit_transform(embeddings)
|
235 |
-
|
236 |
-
scaler = MinMaxScaler(feature_range=(0, 1))
|
237 |
-
embeddings_reduced_normalized = scaler.fit_transform(embeddings_reduced)
|
238 |
-
|
239 |
total_frames = max(frames)
|
240 |
timecodes = [frame_to_timecode(frame, total_frames, video_duration) for frame in frames]
|
241 |
-
times_in_minutes = [frame / total_frames * video_duration / 60 for frame in frames]
|
242 |
|
243 |
df_data = {
|
244 |
'Frame': frames,
|
245 |
'Timecode': timecodes,
|
246 |
-
'Time (Minutes)': times_in_minutes,
|
247 |
'Embedding_Index': range(len(embeddings))
|
248 |
}
|
249 |
|
250 |
-
# Add raw embeddings
|
251 |
for i in range(len(embeddings[0])):
|
252 |
df_data[f'Raw_Embedding_{i}'] = [embedding[i] for embedding in embeddings]
|
253 |
|
254 |
-
for i in range(optimal_components):
|
255 |
-
df_data[f'Comp {i + 1}'] = embeddings_reduced_normalized[:, i]
|
256 |
-
|
257 |
for emotion in emotions:
|
258 |
df_data[emotion] = [e[emotion] for e in emotions_data]
|
259 |
|
@@ -261,123 +235,139 @@ def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, de
|
|
261 |
|
262 |
return df, largest_cluster
|
263 |
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
|
274 |
def forward(self, x):
|
275 |
-
|
276 |
-
|
277 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
|
|
|
|
|
279 |
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
if X.dim() == 2:
|
284 |
-
X = X.unsqueeze(0)
|
285 |
-
elif X.dim() == 1:
|
286 |
-
X = X.unsqueeze(0).unsqueeze(2)
|
287 |
|
288 |
-
|
|
|
|
|
|
|
289 |
|
290 |
-
|
291 |
criterion = nn.MSELoss()
|
292 |
-
|
293 |
|
|
|
294 |
for epoch in range(epochs):
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
with torch.no_grad():
|
307 |
-
|
308 |
-
|
309 |
-
mse_all = np.mean(np.power(X.squeeze(0).cpu().numpy() - reconstructed, 2), axis=1)
|
310 |
-
|
311 |
-
component_columns = [col for col in feature_columns if col.startswith('Comp')]
|
312 |
-
component_indices = [feature_columns.index(col) for col in component_columns]
|
313 |
|
314 |
-
|
315 |
-
|
316 |
-
np.power(X.squeeze(0).cpu().numpy()[:, component_indices] - reconstructed[:, component_indices], 2), axis=1)
|
317 |
-
else:
|
318 |
-
mse_comp = mse_all
|
319 |
-
|
320 |
-
raw_embedding_indices = [feature_columns.index(col) for col in raw_embedding_columns]
|
321 |
-
mse_raw = np.mean(np.power(X.squeeze(0).cpu().numpy()[:, raw_embedding_indices] - reconstructed[:, raw_embedding_indices], 2), axis=1)
|
322 |
|
323 |
-
return
|
324 |
|
325 |
-
def
|
326 |
-
|
327 |
-
|
328 |
-
if X.dim() == 2:
|
329 |
-
X = X.unsqueeze(0)
|
330 |
-
elif X.dim() == 1:
|
331 |
-
X = X.unsqueeze(0).unsqueeze(2)
|
332 |
-
|
333 |
-
model = LSTMAutoencoder(input_size=X.shape[2]).to(device)
|
334 |
-
criterion = nn.MSELoss()
|
335 |
-
optimizer = optim.Adam(model.parameters())
|
336 |
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
output = model(X)
|
341 |
-
loss = criterion(output, X)
|
342 |
-
loss.backward()
|
343 |
-
optimizer.step()
|
344 |
-
|
345 |
-
model.eval()
|
346 |
-
with torch.no_grad():
|
347 |
-
reconstructed = model(X).squeeze(0).cpu().numpy()
|
348 |
|
349 |
-
|
350 |
-
|
|
|
|
|
351 |
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
return anomalies
|
357 |
|
|
|
|
|
|
|
358 |
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
|
363 |
-
|
364 |
-
|
|
|
365 |
|
366 |
-
#
|
367 |
-
|
|
|
|
|
368 |
|
369 |
-
|
370 |
-
|
371 |
|
372 |
-
|
373 |
-
visible_anomalies = np.where(anomalies)[0][hide_first_n:]
|
374 |
-
ax.scatter(df['Seconds'].iloc[visible_anomalies], mse_values[visible_anomalies], color='red', s=50, zorder=5)
|
375 |
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
anomaly_data.sort(key=lambda x: x[1]) # Sort by seconds
|
381 |
|
382 |
grouped_anomalies = []
|
383 |
current_group = []
|
@@ -390,38 +380,116 @@ def plot_mse(df, mse_values, title, color='blue', time_threshold=1, hide_first_n
|
|
390 |
if current_group:
|
391 |
grouped_anomalies.append(current_group)
|
392 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
393 |
for group in grouped_anomalies:
|
394 |
highest_mse_anomaly = max(group, key=lambda x: x[2])
|
395 |
timecode, sec, mse = highest_mse_anomaly
|
396 |
ax.annotate(timecode, (sec, mse), textcoords="offset points", xytext=(0, 10),
|
397 |
-
ha='center', fontsize=
|
398 |
|
399 |
-
# Add baseline (mean MSE) line
|
400 |
-
mean_mse = np.mean(mse_values)
|
401 |
-
ax.axhline(y=mean_mse, color='black', linestyle='--', linewidth=1)
|
402 |
-
ax.text(df['Seconds'].max(), mean_mse, f'Baseline ({mean_mse:.6f})',
|
403 |
-
verticalalignment='bottom', horizontalalignment='right', color='black', fontsize=8)
|
404 |
-
|
405 |
-
# Set x-axis labels to timecodes
|
406 |
max_seconds = df['Seconds'].max()
|
407 |
num_ticks = 100
|
408 |
tick_locations = np.linspace(0, max_seconds, num_ticks)
|
409 |
-
tick_labels = [
|
410 |
-
for s in tick_locations]
|
411 |
|
412 |
ax.set_xticks(tick_locations)
|
413 |
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)
|
414 |
|
415 |
-
ax.set_xlabel('
|
416 |
ax.set_ylabel('Mean Squared Error')
|
417 |
ax.set_title(title)
|
418 |
|
419 |
ax.grid(True, linestyle='--', alpha=0.7)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
420 |
plt.tight_layout()
|
421 |
plt.close()
|
422 |
return fig
|
423 |
|
424 |
-
def get_all_face_samples(organized_faces_folder, output_folder, largest_cluster):
|
425 |
face_samples = {"most_frequent": [], "others": []}
|
426 |
for cluster_folder in sorted(os.listdir(organized_faces_folder)):
|
427 |
if cluster_folder.startswith("person_"):
|
@@ -430,7 +498,7 @@ def get_all_face_samples(organized_faces_folder, output_folder, largest_cluster)
|
|
430 |
if face_files:
|
431 |
cluster_id = int(cluster_folder.split('_')[1])
|
432 |
if cluster_id == largest_cluster:
|
433 |
-
for i, sample in enumerate(face_files):
|
434 |
face_path = os.path.join(person_folder, sample)
|
435 |
output_path = os.path.join(output_folder, f"face_sample_most_frequent_{i:04d}.jpg")
|
436 |
face_img = cv2.imread(face_path)
|
@@ -438,27 +506,28 @@ def get_all_face_samples(organized_faces_folder, output_folder, largest_cluster)
|
|
438 |
small_face = cv2.resize(face_img, (160, 160))
|
439 |
cv2.imwrite(output_path, small_face)
|
440 |
face_samples["most_frequent"].append(output_path)
|
|
|
|
|
441 |
else:
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
|
|
|
|
|
|
|
|
450 |
return face_samples
|
451 |
|
452 |
-
def process_video(video_path,
|
|
|
453 |
output_folder = "output"
|
454 |
os.makedirs(output_folder, exist_ok=True)
|
455 |
-
|
456 |
-
# Initialize plot variables
|
457 |
-
mse_plot_all = None
|
458 |
-
mse_plot_comp = None
|
459 |
-
mse_plot_raw = None
|
460 |
-
emotion_plots = [None] * 6 # For the 6 emotions
|
461 |
-
face_samples = {"most_frequent": [], "others": []}
|
462 |
|
463 |
with tempfile.TemporaryDirectory() as temp_dir:
|
464 |
aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces')
|
@@ -485,13 +554,12 @@ def process_video(video_path, desired_fps, batch_size, progress=gr.Progress()):
|
|
485 |
progress, batch_size)
|
486 |
|
487 |
if not aligned_face_paths:
|
488 |
-
return ("No faces were extracted from the video.",
|
489 |
-
None, None, None, None, None, None, None, None, None, [], [])
|
490 |
|
491 |
progress(0.6, "Clustering faces")
|
492 |
embeddings = [embedding for _, embedding in embeddings_by_frame.items()]
|
493 |
clusters = cluster_faces(embeddings)
|
494 |
-
num_clusters = len(set(clusters))
|
495 |
|
496 |
progress(0.7, "Organizing faces")
|
497 |
organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder)
|
@@ -500,35 +568,42 @@ def process_video(video_path, desired_fps, batch_size, progress=gr.Progress()):
|
|
500 |
df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps,
|
501 |
original_fps, temp_dir, video_duration)
|
502 |
|
|
|
|
|
|
|
|
|
503 |
progress(0.85, "Getting face samples")
|
504 |
face_samples = get_all_face_samples(organized_faces_folder, output_folder, largest_cluster)
|
505 |
|
506 |
progress(0.9, "Performing anomaly detection")
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
|
|
511 |
|
512 |
try:
|
513 |
-
|
514 |
-
X, feature_columns, raw_embedding_columns, batch_size=batch_size)
|
515 |
|
516 |
progress(0.95, "Generating plots")
|
517 |
-
|
518 |
-
|
519 |
-
|
|
|
|
|
520 |
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
|
|
|
|
527 |
|
528 |
except Exception as e:
|
529 |
print(f"Error details: {str(e)}")
|
530 |
-
return (f"Error in anomaly detection: {str(e)}",
|
531 |
-
None, None, None, None, None, None, None, None, None, [], [])
|
532 |
|
533 |
progress(1.0, "Preparing results")
|
534 |
results = f"Number of persons/clusters detected: {num_clusters}\n\n"
|
@@ -536,58 +611,73 @@ def process_video(video_path, desired_fps, batch_size, progress=gr.Progress()):
|
|
536 |
for cluster_id in range(num_clusters):
|
537 |
results += f"Person/Cluster {cluster_id + 1}: {len([c for c in clusters if c == cluster_id])} frames\n"
|
538 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
539 |
return (
|
|
|
540 |
results,
|
541 |
-
|
542 |
-
|
543 |
-
|
|
|
|
|
544 |
*emotion_plots,
|
545 |
face_samples["most_frequent"],
|
546 |
-
face_samples["others"]
|
|
|
|
|
547 |
)
|
548 |
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
gr.
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
iface.launch()
|
|
|
1 |
+
import math
|
2 |
import os
|
3 |
import cv2
|
4 |
import numpy as np
|
|
|
6 |
import torch.nn as nn
|
7 |
import torch.optim as optim
|
8 |
from facenet_pytorch import InceptionResnetV1, MTCNN
|
9 |
+
import tensorflow as tf
|
10 |
import mediapipe as mp
|
11 |
from fer import FER
|
12 |
from sklearn.cluster import DBSCAN
|
13 |
+
from sklearn.preprocessing import StandardScaler, MinMaxScaler
|
|
|
|
|
14 |
import pandas as pd
|
15 |
import matplotlib
|
16 |
import matplotlib.pyplot as plt
|
17 |
+
from matplotlib.patches import Rectangle
|
18 |
from moviepy.editor import VideoFileClip
|
19 |
from PIL import Image
|
20 |
import gradio as gr
|
21 |
import tempfile
|
22 |
import shutil
|
23 |
+
import copy
|
24 |
+
import time
|
|
|
|
|
25 |
|
26 |
matplotlib.rcParams['figure.dpi'] = 500
|
27 |
matplotlib.rcParams['savefig.dpi'] = 500
|
28 |
|
29 |
# Initialize models and other global variables
|
30 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
31 |
|
32 |
+
mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.95, 0.95, 0.95], min_face_size=80)
|
33 |
model = InceptionResnetV1(pretrained='vggface2').eval().to(device)
|
34 |
mp_face_mesh = mp.solutions.face_mesh
|
35 |
+
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.5)
|
36 |
emotion_detector = FER(mtcnn=False)
|
37 |
|
|
|
38 |
def frame_to_timecode(frame_num, total_frames, duration):
|
39 |
total_seconds = (frame_num / total_frames) * duration
|
40 |
hours = int(total_seconds // 3600)
|
|
|
43 |
milliseconds = int((total_seconds - int(total_seconds)) * 1000)
|
44 |
return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}"
|
45 |
|
46 |
+
def seconds_to_timecode(seconds):
|
47 |
+
hours = int(seconds // 3600)
|
48 |
+
minutes = int((seconds % 3600) // 60)
|
49 |
+
seconds = int(seconds % 60)
|
50 |
+
return f"{hours:02d}:{minutes:02d}:{seconds:02d}"
|
51 |
+
|
52 |
+
def timecode_to_seconds(timecode):
|
53 |
+
h, m, s = map(int, timecode.split(':'))
|
54 |
+
return h * 3600 + m * 60 + s
|
55 |
|
56 |
def get_face_embedding_and_emotion(face_img):
|
57 |
face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255
|
|
|
64 |
if emotions:
|
65 |
emotion_dict = emotions[0]['emotions']
|
66 |
else:
|
67 |
+
emotion_dict = {e: 0 for e in ['angry', 'disgust', 'fear', 'sad', 'happy']}
|
68 |
|
69 |
return embedding.cpu().numpy().flatten(), emotion_dict
|
70 |
|
|
|
71 |
def alignFace(img):
|
72 |
img_raw = img.copy()
|
73 |
results = face_mesh.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
|
|
93 |
new_img = cv2.warpAffine(img_raw, rotation_matrix, (width, height))
|
94 |
return new_img
|
95 |
|
|
|
96 |
def extract_frames(video_path, output_folder, desired_fps, progress_callback=None):
|
97 |
os.makedirs(output_folder, exist_ok=True)
|
98 |
clip = VideoFileClip(video_path)
|
|
|
116 |
clip.close()
|
117 |
return frame_count, original_fps
|
118 |
|
119 |
+
def is_frontal_face(landmarks, threshold=40):
|
120 |
+
nose_tip = landmarks[4]
|
121 |
+
left_chin = landmarks[234]
|
122 |
+
right_chin = landmarks[454]
|
123 |
+
nose_to_left = [left_chin.x - nose_tip.x, left_chin.y - nose_tip.y]
|
124 |
+
nose_to_right = [right_chin.x - nose_tip.x, right_chin.y - nose_tip.y]
|
125 |
+
dot_product = nose_to_left[0] * nose_to_right[0] + nose_to_left[1] * nose_to_right[1]
|
126 |
+
magnitude_left = math.sqrt(nose_to_left[0] ** 2 + nose_to_left[1] ** 2)
|
127 |
+
magnitude_right = math.sqrt(nose_to_right[0] ** 2 + nose_to_right[1] ** 2)
|
128 |
+
cos_angle = dot_product / (magnitude_left * magnitude_right)
|
129 |
+
angle = math.acos(cos_angle)
|
130 |
+
angle_degrees = math.degrees(angle)
|
131 |
+
return abs(180 - angle_degrees) < threshold
|
132 |
|
133 |
def process_frames(frames_folder, aligned_faces_folder, frame_count, progress, batch_size):
|
134 |
embeddings_by_frame = {}
|
|
|
158 |
x1, y1, x2, y2 = [int(b) for b in boxes[0]]
|
159 |
face = frame[y1:y2, x1:x2]
|
160 |
if face.size > 0:
|
161 |
+
results = face_mesh.process(cv2.cvtColor(face, cv2.COLOR_BGR2RGB))
|
162 |
+
if results.multi_face_landmarks and is_frontal_face(results.multi_face_landmarks[0].landmark):
|
163 |
+
aligned_face = alignFace(face)
|
164 |
+
if aligned_face is not None:
|
165 |
+
aligned_face_resized = cv2.resize(aligned_face, (160, 160))
|
166 |
+
output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
|
167 |
+
cv2.imwrite(output_path, aligned_face_resized)
|
168 |
+
aligned_face_paths.append(output_path)
|
169 |
+
embedding, emotion = get_face_embedding_and_emotion(aligned_face_resized)
|
170 |
+
embeddings_by_frame[frame_num] = embedding
|
171 |
+
emotions_by_frame[frame_num] = emotion
|
172 |
+
|
173 |
+
progress((i + len(batch_files)) / len(frame_files),
|
174 |
+
f"Processing frames {i + 1} to {min(i + len(batch_files), len(frame_files))} of {len(frame_files)}")
|
175 |
|
176 |
return embeddings_by_frame, emotions_by_frame, aligned_face_paths
|
177 |
|
|
|
178 |
def cluster_faces(embeddings):
|
179 |
if len(embeddings) < 2:
|
180 |
print("Not enough faces for clustering. Assigning all to one cluster.")
|
181 |
return np.zeros(len(embeddings), dtype=int)
|
182 |
|
183 |
X = np.stack(embeddings)
|
|
|
184 |
dbscan = DBSCAN(eps=0.5, min_samples=5, metric='cosine')
|
185 |
clusters = dbscan.fit_predict(X)
|
186 |
|
|
|
190 |
|
191 |
return clusters
|
192 |
|
|
|
193 |
def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder):
|
194 |
for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters):
|
195 |
person_folder = os.path.join(organized_faces_folder, f"person_{cluster}")
|
|
|
198 |
dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg")
|
199 |
shutil.copy(src, dst)
|
200 |
|
201 |
+
def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, output_folder, video_duration):
|
202 |
+
emotions = ['angry', 'disgust', 'fear', 'sad', 'happy']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
person_data = {}
|
204 |
|
205 |
+
for (frame_num, embedding), (_, emotion_dict), cluster in zip(embeddings_by_frame.items(), emotions_by_frame.items(), clusters):
|
|
|
206 |
if cluster not in person_data:
|
207 |
person_data[cluster] = []
|
208 |
person_data[cluster].append((frame_num, embedding, {e: emotion_dict[e] for e in emotions}))
|
|
|
216 |
embeddings_array = np.array(embeddings)
|
217 |
np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array)
|
218 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
total_frames = max(frames)
|
220 |
timecodes = [frame_to_timecode(frame, total_frames, video_duration) for frame in frames]
|
|
|
221 |
|
222 |
df_data = {
|
223 |
'Frame': frames,
|
224 |
'Timecode': timecodes,
|
|
|
225 |
'Embedding_Index': range(len(embeddings))
|
226 |
}
|
227 |
|
|
|
228 |
for i in range(len(embeddings[0])):
|
229 |
df_data[f'Raw_Embedding_{i}'] = [embedding[i] for embedding in embeddings]
|
230 |
|
|
|
|
|
|
|
231 |
for emotion in emotions:
|
232 |
df_data[emotion] = [e[emotion] for e in emotions_data]
|
233 |
|
|
|
235 |
|
236 |
return df, largest_cluster
|
237 |
|
238 |
+
class Autoencoder(nn.Module):
|
239 |
+
def __init__(self, input_size):
|
240 |
+
super(Autoencoder, self).__init__()
|
241 |
+
self.encoder = nn.Sequential(
|
242 |
+
nn.Linear(input_size, 512),
|
243 |
+
nn.ReLU(),
|
244 |
+
nn.Linear(512, 256),
|
245 |
+
nn.ReLU(),
|
246 |
+
nn.Linear(256, 128),
|
247 |
+
nn.ReLU(),
|
248 |
+
nn.Linear(128, 64)
|
249 |
+
)
|
250 |
+
self.decoder = nn.Sequential(
|
251 |
+
nn.Linear(64, 128),
|
252 |
+
nn.ReLU(),
|
253 |
+
nn.Linear(128, 256),
|
254 |
+
nn.ReLU(),
|
255 |
+
nn.Linear(256, 512),
|
256 |
+
nn.ReLU(),
|
257 |
+
nn.Linear(512, input_size)
|
258 |
+
)
|
259 |
|
260 |
def forward(self, x):
|
261 |
+
batch_size, seq_len, _ = x.size()
|
262 |
+
x = x.view(batch_size * seq_len, -1)
|
263 |
+
encoded = self.encoder(x)
|
264 |
+
decoded = self.decoder(encoded)
|
265 |
+
return decoded.view(batch_size, seq_len, -1)
|
266 |
+
|
267 |
+
def determine_anomalies(mse_values, threshold):
|
268 |
+
mean = np.mean(mse_values)
|
269 |
+
std = np.std(mse_values)
|
270 |
+
anomalies = mse_values > (mean + threshold * std)
|
271 |
+
return anomalies
|
272 |
|
273 |
+
def anomaly_detection(X_emotions, X_embeddings, epochs=200, batch_size=8, patience=3):
|
274 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
275 |
|
276 |
+
# Normalize emotions
|
277 |
+
scaler_emotions = MinMaxScaler()
|
278 |
+
X_emotions_scaled = scaler_emotions.fit_transform(X_emotions)
|
|
|
|
|
|
|
|
|
279 |
|
280 |
+
# Process emotions
|
281 |
+
X_emotions_scaled = torch.FloatTensor(X_emotions_scaled).to(device)
|
282 |
+
if X_emotions_scaled.dim() == 2:
|
283 |
+
X_emotions_scaled = X_emotions_scaled.unsqueeze(0)
|
284 |
|
285 |
+
model_emotions = Autoencoder(input_size=X_emotions_scaled.shape[2]).to(device)
|
286 |
criterion = nn.MSELoss()
|
287 |
+
optimizer_emotions = optim.Adam(model_emotions.parameters())
|
288 |
|
289 |
+
# Train emotions model
|
290 |
for epoch in range(epochs):
|
291 |
+
model_emotions.train()
|
292 |
+
optimizer_emotions.zero_grad()
|
293 |
+
output_emotions = model_emotions(X_emotions_scaled)
|
294 |
+
loss_emotions = criterion(output_emotions, X_emotions_scaled)
|
295 |
+
loss_emotions.backward()
|
296 |
+
optimizer_emotions.step()
|
297 |
+
|
298 |
+
# Process facial embeddings
|
299 |
+
X_embeddings = torch.FloatTensor(X_embeddings).to(device)
|
300 |
+
if X_embeddings.dim() == 2:
|
301 |
+
X_embeddings = X_embeddings.unsqueeze(0)
|
302 |
+
|
303 |
+
model_embeddings = Autoencoder(input_size=X_embeddings.shape[2]).to(device)
|
304 |
+
optimizer_embeddings = optim.Adam(model_embeddings.parameters())
|
305 |
+
|
306 |
+
# Train embeddings model
|
307 |
+
for epoch in range(epochs):
|
308 |
+
model_embeddings.train()
|
309 |
+
optimizer_embeddings.zero_grad()
|
310 |
+
output_embeddings = model_embeddings(X_embeddings)
|
311 |
+
loss_embeddings = criterion(output_embeddings, X_embeddings)
|
312 |
+
loss_embeddings.backward()
|
313 |
+
optimizer_embeddings.step()
|
314 |
+
|
315 |
+
# Compute MSE for emotions and embeddings
|
316 |
+
model_emotions.eval()
|
317 |
+
model_embeddings.eval()
|
318 |
with torch.no_grad():
|
319 |
+
reconstructed_emotions = model_emotions(X_emotions_scaled).cpu().numpy()
|
320 |
+
reconstructed_embeddings = model_embeddings(X_embeddings).cpu().numpy()
|
|
|
|
|
|
|
|
|
321 |
|
322 |
+
mse_emotions = np.mean(np.power(X_emotions_scaled.cpu().numpy() - reconstructed_emotions, 2), axis=2).squeeze()
|
323 |
+
mse_embeddings = np.mean(np.power(X_embeddings.cpu().numpy() - reconstructed_embeddings, 2), axis=2).squeeze()
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
|
325 |
+
return mse_emotions, mse_embeddings
|
326 |
|
327 |
+
def plot_mse(df, mse_values, title, color='blue', time_threshold=3, anomaly_threshold=4):
|
328 |
+
plt.figure(figsize=(16, 8), dpi=500)
|
329 |
+
fig, ax = plt.subplots(figsize=(16, 8))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
|
331 |
+
if 'Seconds' not in df.columns:
|
332 |
+
df['Seconds'] = df['Timecode'].apply(
|
333 |
+
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
|
335 |
+
# Ensure df and mse_values have the same length and remove NaN values
|
336 |
+
min_length = min(len(df), len(mse_values))
|
337 |
+
df = df.iloc[:min_length]
|
338 |
+
mse_values = mse_values[:min_length]
|
339 |
|
340 |
+
# Remove NaN values
|
341 |
+
mask = ~np.isnan(mse_values)
|
342 |
+
df = df[mask]
|
343 |
+
mse_values = mse_values[mask]
|
|
|
344 |
|
345 |
+
mean = pd.Series(mse_values).rolling(window=10).mean()
|
346 |
+
std = pd.Series(mse_values).rolling(window=10).std()
|
347 |
+
median = np.median(mse_values)
|
348 |
|
349 |
+
ax.scatter(df['Seconds'], mse_values, color=color, alpha=0.3, s=5)
|
350 |
+
ax.plot(df['Seconds'], mean, color=color, linewidth=2)
|
351 |
+
ax.fill_between(df['Seconds'], mean - std, mean + std, color=color, alpha=0.2)
|
352 |
|
353 |
+
# Add median line
|
354 |
+
ax.axhline(y=median, color='black', linestyle='--', label='Baseline')
|
355 |
+
ax.text(ax.get_xlim()[1], median, 'Baseline', verticalalignment='center', horizontalalignment='left', color='black')
|
356 |
|
357 |
+
# Add threshold line
|
358 |
+
threshold = np.mean(mse_values) + anomaly_threshold * np.std(mse_values)
|
359 |
+
ax.axhline(y=threshold, color='red', linestyle='--', label=f'Threshold: {anomaly_threshold:.1f}')
|
360 |
+
ax.text(ax.get_xlim()[1], threshold, f'Threshold: {anomaly_threshold:.1f}', verticalalignment='center', horizontalalignment='left', color='red')
|
361 |
|
362 |
+
anomalies = determine_anomalies(mse_values, anomaly_threshold)
|
363 |
+
anomaly_frames = df['Frame'].iloc[anomalies].tolist()
|
364 |
|
365 |
+
ax.scatter(df['Seconds'].iloc[anomalies], mse_values[anomalies], color='red', s=25, zorder=5)
|
|
|
|
|
366 |
|
367 |
+
anomaly_data = list(zip(df['Timecode'].iloc[anomalies],
|
368 |
+
df['Seconds'].iloc[anomalies],
|
369 |
+
mse_values[anomalies]))
|
370 |
+
anomaly_data.sort(key=lambda x: x[1])
|
|
|
371 |
|
372 |
grouped_anomalies = []
|
373 |
current_group = []
|
|
|
380 |
if current_group:
|
381 |
grouped_anomalies.append(current_group)
|
382 |
|
383 |
+
for group in grouped_anomalies:
|
384 |
+
start_sec = group[0][1]
|
385 |
+
end_sec = group[-1][1]
|
386 |
+
rect = Rectangle((start_sec, ax.get_ylim()[0]), end_sec - start_sec, ax.get_ylim()[1] - ax.get_ylim()[0],
|
387 |
+
facecolor='red', alpha=0.3, zorder=1)
|
388 |
+
ax.add_patch(rect)
|
389 |
+
|
390 |
for group in grouped_anomalies:
|
391 |
highest_mse_anomaly = max(group, key=lambda x: x[2])
|
392 |
timecode, sec, mse = highest_mse_anomaly
|
393 |
ax.annotate(timecode, (sec, mse), textcoords="offset points", xytext=(0, 10),
|
394 |
+
ha='center', fontsize=6, color='red')
|
395 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
max_seconds = df['Seconds'].max()
|
397 |
num_ticks = 100
|
398 |
tick_locations = np.linspace(0, max_seconds, num_ticks)
|
399 |
+
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]
|
|
|
400 |
|
401 |
ax.set_xticks(tick_locations)
|
402 |
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)
|
403 |
|
404 |
+
ax.set_xlabel('Timecode')
|
405 |
ax.set_ylabel('Mean Squared Error')
|
406 |
ax.set_title(title)
|
407 |
|
408 |
ax.grid(True, linestyle='--', alpha=0.7)
|
409 |
+
ax.legend()
|
410 |
+
plt.tight_layout()
|
411 |
+
plt.close()
|
412 |
+
return fig, anomaly_frames
|
413 |
+
|
414 |
+
def plot_mse_histogram(mse_values, title, anomaly_threshold, color='blue'):
|
415 |
+
plt.figure(figsize=(16, 8), dpi=500)
|
416 |
+
fig, ax = plt.subplots(figsize=(16, 8))
|
417 |
+
|
418 |
+
ax.hist(mse_values, bins=100, edgecolor='black', color=color, alpha=0.7)
|
419 |
+
ax.set_xlabel('Mean Squared Error')
|
420 |
+
ax.set_ylabel('Number of Samples')
|
421 |
+
ax.set_title(title)
|
422 |
+
|
423 |
+
mean = np.mean(mse_values)
|
424 |
+
std = np.std(mse_values)
|
425 |
+
threshold = mean + anomaly_threshold * std
|
426 |
+
|
427 |
+
ax.axvline(x=threshold, color='red', linestyle='--', linewidth=2)
|
428 |
+
|
429 |
+
# Move annotation to the bottom and away from the line
|
430 |
+
ax.annotate(f'Threshold: {anomaly_threshold:.1f}',
|
431 |
+
xy=(threshold, ax.get_ylim()[0]),
|
432 |
+
xytext=(0, -20),
|
433 |
+
textcoords='offset points',
|
434 |
+
ha='center', va='top',
|
435 |
+
bbox=dict(boxstyle='round,pad=0.5', fc='white', ec='none', alpha=0.7),
|
436 |
+
color='red')
|
437 |
+
|
438 |
+
plt.tight_layout()
|
439 |
+
plt.close()
|
440 |
+
return fig
|
441 |
+
|
442 |
+
|
443 |
+
def plot_emotion(df, emotion, color, anomaly_threshold):
|
444 |
+
plt.figure(figsize=(16, 8), dpi=500)
|
445 |
+
fig, ax = plt.subplots(figsize=(16, 8))
|
446 |
+
|
447 |
+
df['Seconds'] = df['Timecode'].apply(
|
448 |
+
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
|
449 |
+
|
450 |
+
mean = df[emotion].rolling(window=10).mean()
|
451 |
+
std = df[emotion].rolling(window=10).std()
|
452 |
+
median = df[emotion].median()
|
453 |
+
|
454 |
+
ax.scatter(df['Seconds'], df[emotion], color=color, alpha=0.3, s=5)
|
455 |
+
ax.plot(df['Seconds'], mean, color=color, linewidth=2)
|
456 |
+
ax.fill_between(df['Seconds'], mean - std, mean + std, color=color, alpha=0.2)
|
457 |
+
|
458 |
+
# Add median line
|
459 |
+
ax.axhline(y=median, color='black', linestyle='--', label='Baseline')
|
460 |
+
ax.text(ax.get_xlim()[1], median, 'Baseline', verticalalignment='center', horizontalalignment='left', color='black')
|
461 |
+
|
462 |
+
# Convert anomaly threshold to probability
|
463 |
+
probability_threshold = (anomaly_threshold - 1) / 6 # Convert 1-7 scale to 0-1 probability
|
464 |
+
|
465 |
+
# Add threshold line and detect anomalies
|
466 |
+
ax.axhline(y=probability_threshold, color='red', linestyle='--', label=f'Threshold: {probability_threshold:.2f}')
|
467 |
+
ax.text(ax.get_xlim()[1], probability_threshold, f'Threshold: {probability_threshold:.2f}',
|
468 |
+
verticalalignment='center', horizontalalignment='left', color='red')
|
469 |
+
|
470 |
+
# Detect and highlight anomalies
|
471 |
+
anomalies = df[emotion] >= probability_threshold
|
472 |
+
ax.scatter(df['Seconds'][anomalies], df[emotion][anomalies], color='red', s=25, zorder=5)
|
473 |
+
|
474 |
+
max_seconds = df['Seconds'].max()
|
475 |
+
num_ticks = 100
|
476 |
+
tick_locations = np.linspace(0, max_seconds, num_ticks)
|
477 |
+
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]
|
478 |
+
|
479 |
+
ax.set_xticks(tick_locations)
|
480 |
+
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)
|
481 |
+
|
482 |
+
ax.set_xlabel('Timecode')
|
483 |
+
ax.set_ylabel('Emotion Probability')
|
484 |
+
ax.set_title(f"{emotion.capitalize()} Over Time")
|
485 |
+
|
486 |
+
ax.grid(True, linestyle='--', alpha=0.7)
|
487 |
+
ax.legend()
|
488 |
plt.tight_layout()
|
489 |
plt.close()
|
490 |
return fig
|
491 |
|
492 |
+
def get_all_face_samples(organized_faces_folder, output_folder, largest_cluster, max_samples=500):
|
493 |
face_samples = {"most_frequent": [], "others": []}
|
494 |
for cluster_folder in sorted(os.listdir(organized_faces_folder)):
|
495 |
if cluster_folder.startswith("person_"):
|
|
|
498 |
if face_files:
|
499 |
cluster_id = int(cluster_folder.split('_')[1])
|
500 |
if cluster_id == largest_cluster:
|
501 |
+
for i, sample in enumerate(face_files[:max_samples]):
|
502 |
face_path = os.path.join(person_folder, sample)
|
503 |
output_path = os.path.join(output_folder, f"face_sample_most_frequent_{i:04d}.jpg")
|
504 |
face_img = cv2.imread(face_path)
|
|
|
506 |
small_face = cv2.resize(face_img, (160, 160))
|
507 |
cv2.imwrite(output_path, small_face)
|
508 |
face_samples["most_frequent"].append(output_path)
|
509 |
+
if len(face_samples["most_frequent"]) >= max_samples:
|
510 |
+
break
|
511 |
else:
|
512 |
+
remaining_samples = max_samples - len(face_samples["others"])
|
513 |
+
if remaining_samples > 0:
|
514 |
+
for i, sample in enumerate(face_files[:remaining_samples]):
|
515 |
+
face_path = os.path.join(person_folder, sample)
|
516 |
+
output_path = os.path.join(output_folder, f"face_sample_other_{cluster_id:02d}_{i:04d}.jpg")
|
517 |
+
face_img = cv2.imread(face_path)
|
518 |
+
if face_img is not None:
|
519 |
+
small_face = cv2.resize(face_img, (160, 160))
|
520 |
+
cv2.imwrite(output_path, small_face)
|
521 |
+
face_samples["others"].append(output_path)
|
522 |
+
if len(face_samples["others"]) >= max_samples:
|
523 |
+
break
|
524 |
return face_samples
|
525 |
|
526 |
+
def process_video(video_path, anomaly_threshold, desired_fps, progress=gr.Progress()):
|
527 |
+
start_time = time.time()
|
528 |
output_folder = "output"
|
529 |
os.makedirs(output_folder, exist_ok=True)
|
530 |
+
batch_size = 16
|
|
|
|
|
|
|
|
|
|
|
|
|
531 |
|
532 |
with tempfile.TemporaryDirectory() as temp_dir:
|
533 |
aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces')
|
|
|
554 |
progress, batch_size)
|
555 |
|
556 |
if not aligned_face_paths:
|
557 |
+
return ("No faces were extracted from the video.",) + (None,) * 10
|
|
|
558 |
|
559 |
progress(0.6, "Clustering faces")
|
560 |
embeddings = [embedding for _, embedding in embeddings_by_frame.items()]
|
561 |
clusters = cluster_faces(embeddings)
|
562 |
+
num_clusters = len(set(clusters))
|
563 |
|
564 |
progress(0.7, "Organizing faces")
|
565 |
organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder)
|
|
|
568 |
df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps,
|
569 |
original_fps, temp_dir, video_duration)
|
570 |
|
571 |
+
# Add 'Seconds' column to df
|
572 |
+
df['Seconds'] = df['Timecode'].apply(
|
573 |
+
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
|
574 |
+
|
575 |
progress(0.85, "Getting face samples")
|
576 |
face_samples = get_all_face_samples(organized_faces_folder, output_folder, largest_cluster)
|
577 |
|
578 |
progress(0.9, "Performing anomaly detection")
|
579 |
+
emotion_columns = ['angry', 'disgust', 'fear', 'sad', 'happy']
|
580 |
+
embedding_columns = [col for col in df.columns if col.startswith('Raw_Embedding_')]
|
581 |
+
|
582 |
+
X_emotions = df[emotion_columns].values
|
583 |
+
X_embeddings = df[embedding_columns].values
|
584 |
|
585 |
try:
|
586 |
+
mse_emotions, mse_embeddings = anomaly_detection(X_emotions, X_embeddings, batch_size=batch_size)
|
|
|
587 |
|
588 |
progress(0.95, "Generating plots")
|
589 |
+
mse_plot_embeddings, anomaly_frames_embeddings = plot_mse(df, mse_embeddings, "Facial Embeddings",
|
590 |
+
color='green',
|
591 |
+
anomaly_threshold=anomaly_threshold)
|
592 |
+
mse_histogram_embeddings = plot_mse_histogram(mse_embeddings, "MSE Distribution: Facial Embeddings",
|
593 |
+
anomaly_threshold, color='green')
|
594 |
|
595 |
+
# Add emotion plots
|
596 |
+
emotion_plots = []
|
597 |
+
for emotion, color in zip(emotion_columns, ['purple', 'brown', 'green', 'orange', 'darkblue']):
|
598 |
+
emotion_plot = plot_emotion(df, emotion, color, anomaly_threshold)
|
599 |
+
emotion_plots.append(emotion_plot)
|
600 |
+
|
601 |
+
mse_var_emotions = np.var(mse_emotions)
|
602 |
+
mse_var_embeddings = np.var(mse_embeddings)
|
603 |
|
604 |
except Exception as e:
|
605 |
print(f"Error details: {str(e)}")
|
606 |
+
return (f"Error in anomaly detection: {str(e)}",) + (None,) * 15
|
|
|
607 |
|
608 |
progress(1.0, "Preparing results")
|
609 |
results = f"Number of persons/clusters detected: {num_clusters}\n\n"
|
|
|
611 |
for cluster_id in range(num_clusters):
|
612 |
results += f"Person/Cluster {cluster_id + 1}: {len([c for c in clusters if c == cluster_id])} frames\n"
|
613 |
|
614 |
+
end_time = time.time()
|
615 |
+
execution_time = end_time - start_time
|
616 |
+
|
617 |
+
# Load anomaly frames as images
|
618 |
+
anomaly_faces_embeddings = [
|
619 |
+
cv2.imread(os.path.join(aligned_faces_folder, f"frame_{frame}_face.jpg"))
|
620 |
+
for frame in anomaly_frames_embeddings
|
621 |
+
if os.path.exists(os.path.join(aligned_faces_folder, f"frame_{frame}_face.jpg"))
|
622 |
+
]
|
623 |
+
anomaly_faces_embeddings = [cv2.cvtColor(face, cv2.COLOR_BGR2RGB) for face in anomaly_faces_embeddings if face is not None]
|
624 |
+
|
625 |
return (
|
626 |
+
execution_time,
|
627 |
results,
|
628 |
+
df,
|
629 |
+
mse_embeddings,
|
630 |
+
mse_emotions,
|
631 |
+
mse_plot_embeddings,
|
632 |
+
mse_histogram_embeddings,
|
633 |
*emotion_plots,
|
634 |
face_samples["most_frequent"],
|
635 |
+
face_samples["others"],
|
636 |
+
anomaly_faces_embeddings,
|
637 |
+
aligned_faces_folder
|
638 |
)
|
639 |
|
640 |
+
with gr.Blocks() as iface:
|
641 |
+
gr.Markdown("# Facial Expressions Anomaly Detection")
|
642 |
+
|
643 |
+
with gr.Row():
|
644 |
+
video_input = gr.Video()
|
645 |
+
anomaly_threshold = gr.Slider(minimum=1, maximum=7, step=0.1, value=4.5, label="Anomaly Detection Threshold")
|
646 |
+
fps_slider = gr.Slider(minimum=10, maximum=20, step=5, value=20, label="Frames Per Second")
|
647 |
+
|
648 |
+
process_btn = gr.Button("Process Video")
|
649 |
+
|
650 |
+
execution_time = gr.Number(label="Execution Time (seconds)")
|
651 |
+
results_text = gr.Textbox(label="Anomaly Detection Results")
|
652 |
+
|
653 |
+
anomaly_frames_embeddings = gr.Gallery(label="Anomaly Frames (Facial Embeddings)", columns=6, rows=2, height="auto")
|
654 |
+
|
655 |
+
mse_embeddings_plot = gr.Plot(label="MSE: Facial Embeddings")
|
656 |
+
mse_embeddings_hist = gr.Plot(label="MSE Distribution: Facial Embeddings")
|
657 |
+
|
658 |
+
# Add emotion plots
|
659 |
+
emotion_plots = [gr.Plot(label=f"{emotion.capitalize()} Over Time") for emotion in ['angry', 'disgust', 'fear', 'sad', 'happy']]
|
660 |
+
|
661 |
+
face_samples_most_frequent = gr.Gallery(label="Most Frequent Person Samples (Target)", columns=6, rows=2, height="auto")
|
662 |
+
face_samples_others = gr.Gallery(label="Other Persons Samples", columns=6, rows=1, height="auto")
|
663 |
+
|
664 |
+
# Hidden components to store intermediate results
|
665 |
+
df_store = gr.State()
|
666 |
+
mse_emotions_store = gr.State()
|
667 |
+
mse_embeddings_store = gr.State()
|
668 |
+
aligned_faces_folder_store = gr.State()
|
669 |
+
|
670 |
+
process_btn.click(
|
671 |
+
process_video,
|
672 |
+
inputs=[video_input, anomaly_threshold, fps_slider],
|
673 |
+
outputs=[
|
674 |
+
execution_time, results_text, df_store, mse_embeddings_store, mse_emotions_store,
|
675 |
+
mse_embeddings_plot, mse_embeddings_hist,
|
676 |
+
*emotion_plots,
|
677 |
+
face_samples_most_frequent, face_samples_others, anomaly_frames_embeddings,
|
678 |
+
aligned_faces_folder_store
|
679 |
+
]
|
680 |
+
)
|
681 |
+
|
682 |
+
if __name__ == "__main__":
|
683 |
+
iface.launch()
|
|