reab5555 commited on
Commit
0255b8c
·
verified ·
1 Parent(s): 730bdf9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -16
app.py CHANGED
@@ -29,9 +29,9 @@ matplotlib.rcParams['savefig.dpi'] = 400
29
  # Initialize models and other global variables
30
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
31
 
32
- FIXED_FPS = 20
33
 
34
- mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.95, 0.95, 0.95], min_face_size=100)
35
  model = InceptionResnetV1(pretrained='vggface2').eval().to(device)
36
 
37
  mp_face_mesh = mp.solutions.face_mesh
@@ -215,7 +215,10 @@ def process_frames(frames_folder, aligned_faces_folder, frame_count, progress, b
215
  if face.size > 0:
216
  results = face_mesh.process(cv2.cvtColor(face, cv2.COLOR_BGR2RGB))
217
  if results.multi_face_landmarks and is_frontal_face(results.multi_face_landmarks[0].landmark):
218
- aligned_face = alignFace(face)
 
 
 
219
  if aligned_face is not None:
220
  aligned_face_resized = cv2.resize(aligned_face, (160, 160))
221
  output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
@@ -290,22 +293,22 @@ class Autoencoder(nn.Module):
290
  def __init__(self, input_size):
291
  super(Autoencoder, self).__init__()
292
  self.encoder = nn.Sequential(
293
- nn.Linear(input_size, 512),
294
- nn.ReLU(),
295
- nn.Linear(512, 256),
296
  nn.ReLU(),
297
  nn.Linear(256, 128),
298
  nn.ReLU(),
299
- nn.Linear(128, 64)
 
 
300
  )
301
  self.decoder = nn.Sequential(
 
 
302
  nn.Linear(64, 128),
303
  nn.ReLU(),
304
  nn.Linear(128, 256),
305
  nn.ReLU(),
306
- nn.Linear(256, 512),
307
- nn.ReLU(),
308
- nn.Linear(512, input_size)
309
  )
310
 
311
  def forward(self, x):
@@ -321,7 +324,7 @@ def determine_anomalies(mse_values, threshold):
321
  anomalies = mse_values > (mean + threshold * std)
322
  return anomalies
323
 
324
- def anomaly_detection(X_embeddings, X_posture, epochs=200, batch_size=8, patience=3):
325
  # Normalize posture
326
  scaler_posture = MinMaxScaler()
327
  X_posture_scaled = scaler_posture.fit_transform(X_posture.reshape(-1, 1))
@@ -519,8 +522,8 @@ def plot_posture(df, posture_scores, color='blue', anomaly_threshold=4):
519
 
520
 
521
  def plot_mse_heatmap(mse_values, title, df):
522
- plt.figure(figsize=(20, 10), dpi=400)
523
- fig, ax = plt.subplots(figsize=(20, 10))
524
 
525
  # Reshape MSE values to 2D array for heatmap
526
  mse_2d = mse_values.reshape(1, -1)
@@ -626,7 +629,7 @@ def draw_pose_landmarks(frame, landmarks):
626
 
627
  return annotated_frame
628
 
629
- def get_all_face_samples(organized_faces_folder, output_folder, largest_cluster, max_samples=400):
630
  face_samples = {"most_frequent": [], "others": []}
631
  for cluster_folder in sorted(os.listdir(organized_faces_folder)):
632
  if cluster_folder.startswith("person_"):
@@ -836,13 +839,13 @@ with gr.Blocks() as iface:
836
  with gr.Row():
837
  video_input = gr.Video()
838
 
839
- anomaly_threshold = gr.Slider(minimum=1, maximum=5, step=0.1, value=3.5, label="Anomaly Detection Threshold")
840
  process_btn = gr.Button("Process Video")
841
  progress_bar = gr.Progress()
842
  execution_time = gr.Number(label="Execution Time (seconds)")
843
 
844
  with gr.Group(visible=False) as results_group:
845
- results_text = gr.TextArea(label="Anomaly Detection Results", lines=6)
846
 
847
  with gr.Tab("Facial Features"):
848
  mse_features_plot = gr.Plot(label="MSE: Facial Features")
 
29
  # Initialize models and other global variables
30
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
31
 
32
+ FIXED_FPS = 5
33
 
34
+ mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.95, 0.95, 0.95], min_face_size=80)
35
  model = InceptionResnetV1(pretrained='vggface2').eval().to(device)
36
 
37
  mp_face_mesh = mp.solutions.face_mesh
 
215
  if face.size > 0:
216
  results = face_mesh.process(cv2.cvtColor(face, cv2.COLOR_BGR2RGB))
217
  if results.multi_face_landmarks and is_frontal_face(results.multi_face_landmarks[0].landmark):
218
+
219
+ #aligned_face = alignFace(face)
220
+ aligned_face = face
221
+
222
  if aligned_face is not None:
223
  aligned_face_resized = cv2.resize(aligned_face, (160, 160))
224
  output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
 
293
  def __init__(self, input_size):
294
  super(Autoencoder, self).__init__()
295
  self.encoder = nn.Sequential(
296
+ nn.Linear(input_size, 256),
 
 
297
  nn.ReLU(),
298
  nn.Linear(256, 128),
299
  nn.ReLU(),
300
+ nn.Linear(128, 64),
301
+ nn.ReLU(),
302
+ nn.Linear(64, 32)
303
  )
304
  self.decoder = nn.Sequential(
305
+ nn.Linear(32, 64),
306
+ nn.ReLU(),
307
  nn.Linear(64, 128),
308
  nn.ReLU(),
309
  nn.Linear(128, 256),
310
  nn.ReLU(),
311
+ nn.Linear(256, input_size)
 
 
312
  )
313
 
314
  def forward(self, x):
 
324
  anomalies = mse_values > (mean + threshold * std)
325
  return anomalies
326
 
327
+ def anomaly_detection(X_embeddings, X_posture, epochs=200, batch_size=8, patience=5):
328
  # Normalize posture
329
  scaler_posture = MinMaxScaler()
330
  X_posture_scaled = scaler_posture.fit_transform(X_posture.reshape(-1, 1))
 
522
 
523
 
524
  def plot_mse_heatmap(mse_values, title, df):
525
+ plt.figure(figsize=(20, 5), dpi=400)
526
+ fig, ax = plt.subplots(figsize=(20, 5))
527
 
528
  # Reshape MSE values to 2D array for heatmap
529
  mse_2d = mse_values.reshape(1, -1)
 
629
 
630
  return annotated_frame
631
 
632
+ def get_all_face_samples(organized_faces_folder, output_folder, largest_cluster, max_samples=500):
633
  face_samples = {"most_frequent": [], "others": []}
634
  for cluster_folder in sorted(os.listdir(organized_faces_folder)):
635
  if cluster_folder.startswith("person_"):
 
839
  with gr.Row():
840
  video_input = gr.Video()
841
 
842
+ anomaly_threshold = gr.Slider(minimum=1, maximum=5, step=0.1, value=3, label="Anomaly Detection Threshold")
843
  process_btn = gr.Button("Process Video")
844
  progress_bar = gr.Progress()
845
  execution_time = gr.Number(label="Execution Time (seconds)")
846
 
847
  with gr.Group(visible=False) as results_group:
848
+ results_text = gr.TextArea(label="Anomaly Detection Results", lines=4)
849
 
850
  with gr.Tab("Facial Features"):
851
  mse_features_plot = gr.Plot(label="MSE: Facial Features")