Update app.py
Browse files
app.py
CHANGED
@@ -19,8 +19,11 @@ import gradio as gr
|
|
19 |
import tempfile
|
20 |
import shutil
|
21 |
import subprocess
|
22 |
-
import
|
|
|
|
|
23 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
|
|
24 |
tf.get_logger().setLevel('ERROR')
|
25 |
|
26 |
# Initialize models and other global variables
|
@@ -39,7 +42,7 @@ def frame_to_timecode(frame_num, original_fps, desired_fps):
|
|
39 |
seconds = int(total_seconds % 60)
|
40 |
milliseconds = int((total_seconds - int(total_seconds)) * 1000)
|
41 |
return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}"
|
42 |
-
|
43 |
def get_face_embedding_and_emotion(face_img):
|
44 |
face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255
|
45 |
face_tensor = (face_tensor - 0.5) / 0.5
|
@@ -98,16 +101,12 @@ def extract_frames(video_path, output_folder, fps):
|
|
98 |
print(f"FFmpeg stderr: {e.stderr}")
|
99 |
raise
|
100 |
|
101 |
-
import fractions
|
102 |
-
|
103 |
def extract_and_align_faces_from_video(video_path, aligned_faces_folder, desired_fps):
|
104 |
print(f"Processing video: {video_path}")
|
105 |
|
106 |
-
# Extract frames using FFmpeg
|
107 |
frames_folder = os.path.join(os.path.dirname(aligned_faces_folder), 'extracted_frames')
|
108 |
extract_frames(video_path, frames_folder, desired_fps)
|
109 |
|
110 |
-
# Get video info
|
111 |
ffprobe_command = [
|
112 |
'ffprobe',
|
113 |
'-v', 'error',
|
@@ -119,7 +118,7 @@ def extract_and_align_faces_from_video(video_path, aligned_faces_folder, desired
|
|
119 |
]
|
120 |
try:
|
121 |
ffprobe_output = subprocess.check_output(ffprobe_command, universal_newlines=True).strip().split(',')
|
122 |
-
print(f"FFprobe output: {ffprobe_output}")
|
123 |
|
124 |
if len(ffprobe_output) != 2:
|
125 |
raise ValueError(f"Unexpected FFprobe output format: {ffprobe_output}")
|
@@ -127,23 +126,20 @@ def extract_and_align_faces_from_video(video_path, aligned_faces_folder, desired
|
|
127 |
frame_count = ffprobe_output[0]
|
128 |
frame_rate = ffprobe_output[1]
|
129 |
|
130 |
-
print(f"Frame count (raw): {frame_count}")
|
131 |
-
print(f"Frame rate (raw): {frame_rate}")
|
132 |
|
133 |
-
# Convert frame count to int
|
134 |
try:
|
135 |
frame_count = int(frame_count)
|
136 |
except ValueError:
|
137 |
print(f"Warning: Could not convert frame count '{frame_count}' to int. Using fallback method.")
|
138 |
frame_count = len([f for f in os.listdir(frames_folder) if f.endswith('.jpg')])
|
139 |
|
140 |
-
# Convert fractional frame rate to float
|
141 |
try:
|
142 |
frac = fractions.Fraction(frame_rate)
|
143 |
original_fps = float(frac.numerator) / float(frac.denominator)
|
144 |
except (ValueError, ZeroDivisionError):
|
145 |
print(f"Warning: Could not convert frame rate '{frame_rate}' to float. Using fallback method.")
|
146 |
-
# Fallback: Count frames and divide by video duration
|
147 |
frame_count = len([f for f in os.listdir(frames_folder) if f.endswith('.jpg')])
|
148 |
duration_command = ['ffprobe', '-v', 'error', '-show_entries', 'format=duration', '-of', 'default=noprint_wrappers=1:nokey=1', video_path]
|
149 |
duration = float(subprocess.check_output(duration_command, universal_newlines=True).strip())
|
@@ -303,17 +299,27 @@ def lstm_anomaly_detection(X, feature_columns, num_anomalies=10, epochs=100, bat
|
|
303 |
with torch.no_grad():
|
304 |
reconstructed = model(X.unsqueeze(0)).squeeze(0).cpu().numpy()
|
305 |
|
306 |
-
|
|
|
|
|
|
|
|
|
307 |
|
308 |
-
|
309 |
-
|
310 |
-
|
|
|
|
|
|
|
|
|
311 |
|
312 |
-
return
|
|
|
|
|
313 |
|
314 |
def plot_anomaly_scores(df, anomaly_scores, top_indices, title):
|
315 |
fig, ax = plt.subplots(figsize=(16, 8))
|
316 |
-
bars = ax.bar(range(len(df)), anomaly_scores, width=0.8)
|
317 |
for i in top_indices:
|
318 |
bars[i].set_color('red')
|
319 |
ax.set_xlabel('Timecode')
|
@@ -325,23 +331,34 @@ def plot_anomaly_scores(df, anomaly_scores, top_indices, title):
|
|
325 |
plt.tight_layout()
|
326 |
return fig
|
327 |
|
328 |
-
def plot_emotion(df, emotion):
|
329 |
fig, ax = plt.subplots(figsize=(16, 8))
|
330 |
values = df[emotion].values
|
331 |
-
bars = ax.bar(range(len(df)), values, width=0.8)
|
332 |
-
|
333 |
-
for i
|
334 |
-
|
335 |
-
bar.set_color('red')
|
336 |
ax.set_xlabel('Timecode')
|
337 |
ax.set_ylabel(f'{emotion.capitalize()} Score')
|
338 |
-
ax.set_title(f'{emotion.capitalize()} Scores Over Time')
|
339 |
ax.xaxis.set_major_locator(MaxNLocator(nbins=100))
|
340 |
ticks = ax.get_xticks()
|
341 |
ax.set_xticklabels([df['Timecode'].iloc[int(tick)] if tick >= 0 and tick < len(df) else '' for tick in ticks], rotation=90, ha='right')
|
342 |
plt.tight_layout()
|
343 |
return fig
|
344 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
def process_video(video_path, num_anomalies, num_components, desired_fps, batch_size, progress=gr.Progress()):
|
346 |
with tempfile.TemporaryDirectory() as temp_dir:
|
347 |
aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces')
|
@@ -353,10 +370,10 @@ def process_video(video_path, num_anomalies, num_components, desired_fps, batch_
|
|
353 |
try:
|
354 |
embeddings_by_frame, emotions_by_frame, _, original_fps = extract_and_align_faces_from_video(video_path, aligned_faces_folder, desired_fps)
|
355 |
except Exception as e:
|
356 |
-
return f"Error extracting faces: {str(e)}", None, None, None, None
|
357 |
|
358 |
if not embeddings_by_frame:
|
359 |
-
return "No faces were extracted from the video.", None, None, None, None
|
360 |
|
361 |
progress(0.3, "Clustering embeddings")
|
362 |
embeddings = list(embeddings_by_frame.values())
|
@@ -371,25 +388,37 @@ def process_video(video_path, num_anomalies, num_components, desired_fps, batch_
|
|
371 |
progress(0.6, "Performing anomaly detection")
|
372 |
feature_columns = [col for col in df.columns if col not in ['Frame', 'Timecode', 'Time (Minutes)', 'Embedding_Index']]
|
373 |
try:
|
374 |
-
anomalies_all, anomaly_scores_all, top_indices_all, _ = lstm_anomaly_detection(df[feature_columns].values, feature_columns, num_anomalies=num_anomalies, batch_size=batch_size)
|
375 |
except Exception as e:
|
376 |
-
return f"Error in anomaly detection: {str(e)}", None, None, None, None
|
377 |
|
378 |
progress(0.8, "Generating plots")
|
379 |
try:
|
380 |
-
|
381 |
-
|
|
|
|
|
382 |
except Exception as e:
|
383 |
-
return f"Error generating plots: {str(e)}", None, None, None, None
|
384 |
|
385 |
progress(0.9, "Preparing results")
|
386 |
results = f"Top {num_anomalies} anomalies (All Features):\n"
|
387 |
results += "\n".join([f"{score:.4f} at {timecode}" for score, timecode in
|
388 |
zip(anomaly_scores_all[top_indices_all], df['Timecode'].iloc[top_indices_all].values)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
389 |
|
390 |
progress(1.0, "Complete")
|
391 |
-
return results,
|
392 |
-
|
|
|
393 |
iface = gr.Interface(
|
394 |
fn=process_video,
|
395 |
inputs=[
|
@@ -401,7 +430,9 @@ iface = gr.Interface(
|
|
401 |
],
|
402 |
outputs=[
|
403 |
gr.Textbox(label="Anomaly Detection Results"),
|
404 |
-
gr.Plot(label="Anomaly Scores"),
|
|
|
|
|
405 |
gr.Plot(label="Fear Scores"),
|
406 |
gr.Plot(label="Sad Scores"),
|
407 |
gr.Plot(label="Angry Scores")
|
@@ -412,9 +443,9 @@ iface = gr.Interface(
|
|
412 |
It focuses on the most frequently appearing person in the video for analysis.
|
413 |
|
414 |
Adjust the parameters as needed:
|
415 |
-
- Number of Anomalies: How many top anomalies
|
416 |
-
- Number of Components: Complexity of the facial expression model
|
417 |
-
- Desired FPS: Frames per second to analyze (lower for faster processing
|
418 |
- Batch Size: Affects processing speed and memory usage
|
419 |
|
420 |
"""
|
|
|
19 |
import tempfile
|
20 |
import shutil
|
21 |
import subprocess
|
22 |
+
import fractions
|
23 |
+
|
24 |
+
# Suppress TensorFlow warnings
|
25 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
26 |
+
import tensorflow as tf
|
27 |
tf.get_logger().setLevel('ERROR')
|
28 |
|
29 |
# Initialize models and other global variables
|
|
|
42 |
seconds = int(total_seconds % 60)
|
43 |
milliseconds = int((total_seconds - int(total_seconds)) * 1000)
|
44 |
return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}"
|
45 |
+
|
46 |
def get_face_embedding_and_emotion(face_img):
|
47 |
face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255
|
48 |
face_tensor = (face_tensor - 0.5) / 0.5
|
|
|
101 |
print(f"FFmpeg stderr: {e.stderr}")
|
102 |
raise
|
103 |
|
|
|
|
|
104 |
def extract_and_align_faces_from_video(video_path, aligned_faces_folder, desired_fps):
|
105 |
print(f"Processing video: {video_path}")
|
106 |
|
|
|
107 |
frames_folder = os.path.join(os.path.dirname(aligned_faces_folder), 'extracted_frames')
|
108 |
extract_frames(video_path, frames_folder, desired_fps)
|
109 |
|
|
|
110 |
ffprobe_command = [
|
111 |
'ffprobe',
|
112 |
'-v', 'error',
|
|
|
118 |
]
|
119 |
try:
|
120 |
ffprobe_output = subprocess.check_output(ffprobe_command, universal_newlines=True).strip().split(',')
|
121 |
+
print(f"FFprobe output: {ffprobe_output}")
|
122 |
|
123 |
if len(ffprobe_output) != 2:
|
124 |
raise ValueError(f"Unexpected FFprobe output format: {ffprobe_output}")
|
|
|
126 |
frame_count = ffprobe_output[0]
|
127 |
frame_rate = ffprobe_output[1]
|
128 |
|
129 |
+
print(f"Frame count (raw): {frame_count}")
|
130 |
+
print(f"Frame rate (raw): {frame_rate}")
|
131 |
|
|
|
132 |
try:
|
133 |
frame_count = int(frame_count)
|
134 |
except ValueError:
|
135 |
print(f"Warning: Could not convert frame count '{frame_count}' to int. Using fallback method.")
|
136 |
frame_count = len([f for f in os.listdir(frames_folder) if f.endswith('.jpg')])
|
137 |
|
|
|
138 |
try:
|
139 |
frac = fractions.Fraction(frame_rate)
|
140 |
original_fps = float(frac.numerator) / float(frac.denominator)
|
141 |
except (ValueError, ZeroDivisionError):
|
142 |
print(f"Warning: Could not convert frame rate '{frame_rate}' to float. Using fallback method.")
|
|
|
143 |
frame_count = len([f for f in os.listdir(frames_folder) if f.endswith('.jpg')])
|
144 |
duration_command = ['ffprobe', '-v', 'error', '-show_entries', 'format=duration', '-of', 'default=noprint_wrappers=1:nokey=1', video_path]
|
145 |
duration = float(subprocess.check_output(duration_command, universal_newlines=True).strip())
|
|
|
299 |
with torch.no_grad():
|
300 |
reconstructed = model(X.unsqueeze(0)).squeeze(0).cpu().numpy()
|
301 |
|
302 |
+
# Compute anomalies for all features
|
303 |
+
mse_all = np.mean(np.power(X.cpu().numpy() - reconstructed, 2), axis=1)
|
304 |
+
top_indices_all = mse_all.argsort()[-num_anomalies:][::-1]
|
305 |
+
anomalies_all = np.zeros(len(mse_all), dtype=bool)
|
306 |
+
anomalies_all[top_indices_all] = True
|
307 |
|
308 |
+
# Compute anomalies for components only
|
309 |
+
component_columns = [col for col in feature_columns if col.startswith('Comp')]
|
310 |
+
component_indices = [feature_columns.index(col) for col in component_columns]
|
311 |
+
mse_comp = np.mean(np.power(X.cpu().numpy()[:, component_indices] - reconstructed[:, component_indices], 2), axis=1)
|
312 |
+
top_indices_comp = mse_comp.argsort()[-num_anomalies:][::-1]
|
313 |
+
anomalies_comp = np.zeros(len(mse_comp), dtype=bool)
|
314 |
+
anomalies_comp[top_indices_comp] = True
|
315 |
|
316 |
+
return (anomalies_all, mse_all, top_indices_all,
|
317 |
+
anomalies_comp, mse_comp, top_indices_comp,
|
318 |
+
model)
|
319 |
|
320 |
def plot_anomaly_scores(df, anomaly_scores, top_indices, title):
|
321 |
fig, ax = plt.subplots(figsize=(16, 8))
|
322 |
+
bars = ax.bar(range(len(df)), anomaly_scores, width=0.8, color='skyblue')
|
323 |
for i in top_indices:
|
324 |
bars[i].set_color('red')
|
325 |
ax.set_xlabel('Timecode')
|
|
|
331 |
plt.tight_layout()
|
332 |
return fig
|
333 |
|
334 |
+
def plot_emotion(df, emotion, num_anomalies):
|
335 |
fig, ax = plt.subplots(figsize=(16, 8))
|
336 |
values = df[emotion].values
|
337 |
+
bars = ax.bar(range(len(df)), values, width=0.8, color='lightgreen')
|
338 |
+
top_indices = np.argsort(values)[-num_anomalies:][::-1]
|
339 |
+
for i in top_indices:
|
340 |
+
bars[i].set_color('red')
|
|
|
341 |
ax.set_xlabel('Timecode')
|
342 |
ax.set_ylabel(f'{emotion.capitalize()} Score')
|
343 |
+
ax.set_title(f'{emotion.capitalize()} Scores Over Time (Top {num_anomalies} in Red)')
|
344 |
ax.xaxis.set_major_locator(MaxNLocator(nbins=100))
|
345 |
ticks = ax.get_xticks()
|
346 |
ax.set_xticklabels([df['Timecode'].iloc[int(tick)] if tick >= 0 and tick < len(df) else '' for tick in ticks], rotation=90, ha='right')
|
347 |
plt.tight_layout()
|
348 |
return fig
|
349 |
|
350 |
+
def plot_components(df):
|
351 |
+
fig, ax = plt.subplots(figsize=(16, 8))
|
352 |
+
component_columns = [col for col in df.columns if col.startswith('Comp')]
|
353 |
+
for col in component_columns:
|
354 |
+
ax.plot(df['Time (Minutes)'], df[col], label=col)
|
355 |
+
ax.set_xlabel('Time (Minutes)')
|
356 |
+
ax.set_ylabel('Component Value')
|
357 |
+
ax.set_title('UMAP Components Over Time')
|
358 |
+
ax.legend()
|
359 |
+
plt.tight_layout()
|
360 |
+
return fig
|
361 |
+
|
362 |
def process_video(video_path, num_anomalies, num_components, desired_fps, batch_size, progress=gr.Progress()):
|
363 |
with tempfile.TemporaryDirectory() as temp_dir:
|
364 |
aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces')
|
|
|
370 |
try:
|
371 |
embeddings_by_frame, emotions_by_frame, _, original_fps = extract_and_align_faces_from_video(video_path, aligned_faces_folder, desired_fps)
|
372 |
except Exception as e:
|
373 |
+
return f"Error extracting faces: {str(e)}", None, None, None, None, None, None
|
374 |
|
375 |
if not embeddings_by_frame:
|
376 |
+
return "No faces were extracted from the video.", None, None, None, None, None, None
|
377 |
|
378 |
progress(0.3, "Clustering embeddings")
|
379 |
embeddings = list(embeddings_by_frame.values())
|
|
|
388 |
progress(0.6, "Performing anomaly detection")
|
389 |
feature_columns = [col for col in df.columns if col not in ['Frame', 'Timecode', 'Time (Minutes)', 'Embedding_Index']]
|
390 |
try:
|
391 |
+
anomalies_all, anomaly_scores_all, top_indices_all, anomalies_comp, anomaly_scores_comp, top_indices_comp, _ = lstm_anomaly_detection(df[feature_columns].values, feature_columns, num_anomalies=num_anomalies, batch_size=batch_size)
|
392 |
except Exception as e:
|
393 |
+
return f"Error in anomaly detection: {str(e)}", None, None, None, None, None, None
|
394 |
|
395 |
progress(0.8, "Generating plots")
|
396 |
try:
|
397 |
+
anomaly_plot_all = plot_anomaly_scores(df, anomaly_scores_all, top_indices_all, "All Features")
|
398 |
+
anomaly_plot_comp = plot_anomaly_scores(df, anomaly_scores_comp, top_indices_comp, "Components Only")
|
399 |
+
components_plot = plot_components(df)
|
400 |
+
emotion_plots = [plot_emotion(df, emotion, num_anomalies) for emotion in ['fear', 'sad', 'angry']]
|
401 |
except Exception as e:
|
402 |
+
return f"Error generating plots: {str(e)}", None, None, None, None, None, None
|
403 |
|
404 |
progress(0.9, "Preparing results")
|
405 |
results = f"Top {num_anomalies} anomalies (All Features):\n"
|
406 |
results += "\n".join([f"{score:.4f} at {timecode}" for score, timecode in
|
407 |
zip(anomaly_scores_all[top_indices_all], df['Timecode'].iloc[top_indices_all].values)])
|
408 |
+
results += f"\n\nTop {num_anomalies} anomalies (Components Only):\n"
|
409 |
+
results += "\n".join([f"{score:.4f} at {timecode}" for score, timecode in
|
410 |
+
zip(anomaly_scores_comp[top_indices_comp], df['Timecode'].iloc[top_indices_comp].values)])
|
411 |
+
|
412 |
+
# Add top emotion scores to results
|
413 |
+
for emotion in ['fear', 'sad', 'angry']:
|
414 |
+
top_indices = np.argsort(df[emotion].values)[-num_anomalies:][::-1]
|
415 |
+
results += f"\n\nTop {num_anomalies} {emotion.capitalize()} Scores:\n"
|
416 |
+
results += "\n".join([f"{df[emotion].iloc[i]:.4f} at {df['Timecode'].iloc[i]}" for i in top_indices])
|
417 |
|
418 |
progress(1.0, "Complete")
|
419 |
+
return results, anomaly_plot_all, anomaly_plot_comp, components_plot, *emotion_plots
|
420 |
+
|
421 |
+
# Gradio interface
|
422 |
iface = gr.Interface(
|
423 |
fn=process_video,
|
424 |
inputs=[
|
|
|
430 |
],
|
431 |
outputs=[
|
432 |
gr.Textbox(label="Anomaly Detection Results"),
|
433 |
+
gr.Plot(label="Anomaly Scores (All Features)"),
|
434 |
+
gr.Plot(label="Anomaly Scores (Components Only)"),
|
435 |
+
gr.Plot(label="UMAP Components"),
|
436 |
gr.Plot(label="Fear Scores"),
|
437 |
gr.Plot(label="Sad Scores"),
|
438 |
gr.Plot(label="Angry Scores")
|
|
|
443 |
It focuses on the most frequently appearing person in the video for analysis.
|
444 |
|
445 |
Adjust the parameters as needed:
|
446 |
+
- Number of Anomalies: How many top anomalies or high intensities to highlight
|
447 |
+
- Number of Components: Complexity of the facial expression model
|
448 |
+
- Desired FPS: Frames per second to analyze (lower for faster processing)
|
449 |
- Batch Size: Affects processing speed and memory usage
|
450 |
|
451 |
"""
|