reab5555 commited on
Commit
7f69142
·
verified ·
1 Parent(s): d5088c6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +69 -38
app.py CHANGED
@@ -19,8 +19,11 @@ import gradio as gr
19
  import tempfile
20
  import shutil
21
  import subprocess
22
- import tensorflow as tf
 
 
23
  os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
 
24
  tf.get_logger().setLevel('ERROR')
25
 
26
  # Initialize models and other global variables
@@ -39,7 +42,7 @@ def frame_to_timecode(frame_num, original_fps, desired_fps):
39
  seconds = int(total_seconds % 60)
40
  milliseconds = int((total_seconds - int(total_seconds)) * 1000)
41
  return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}"
42
-
43
  def get_face_embedding_and_emotion(face_img):
44
  face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255
45
  face_tensor = (face_tensor - 0.5) / 0.5
@@ -98,16 +101,12 @@ def extract_frames(video_path, output_folder, fps):
98
  print(f"FFmpeg stderr: {e.stderr}")
99
  raise
100
 
101
- import fractions
102
-
103
  def extract_and_align_faces_from_video(video_path, aligned_faces_folder, desired_fps):
104
  print(f"Processing video: {video_path}")
105
 
106
- # Extract frames using FFmpeg
107
  frames_folder = os.path.join(os.path.dirname(aligned_faces_folder), 'extracted_frames')
108
  extract_frames(video_path, frames_folder, desired_fps)
109
 
110
- # Get video info
111
  ffprobe_command = [
112
  'ffprobe',
113
  '-v', 'error',
@@ -119,7 +118,7 @@ def extract_and_align_faces_from_video(video_path, aligned_faces_folder, desired
119
  ]
120
  try:
121
  ffprobe_output = subprocess.check_output(ffprobe_command, universal_newlines=True).strip().split(',')
122
- print(f"FFprobe output: {ffprobe_output}") # Debugging output
123
 
124
  if len(ffprobe_output) != 2:
125
  raise ValueError(f"Unexpected FFprobe output format: {ffprobe_output}")
@@ -127,23 +126,20 @@ def extract_and_align_faces_from_video(video_path, aligned_faces_folder, desired
127
  frame_count = ffprobe_output[0]
128
  frame_rate = ffprobe_output[1]
129
 
130
- print(f"Frame count (raw): {frame_count}") # Debugging output
131
- print(f"Frame rate (raw): {frame_rate}") # Debugging output
132
 
133
- # Convert frame count to int
134
  try:
135
  frame_count = int(frame_count)
136
  except ValueError:
137
  print(f"Warning: Could not convert frame count '{frame_count}' to int. Using fallback method.")
138
  frame_count = len([f for f in os.listdir(frames_folder) if f.endswith('.jpg')])
139
 
140
- # Convert fractional frame rate to float
141
  try:
142
  frac = fractions.Fraction(frame_rate)
143
  original_fps = float(frac.numerator) / float(frac.denominator)
144
  except (ValueError, ZeroDivisionError):
145
  print(f"Warning: Could not convert frame rate '{frame_rate}' to float. Using fallback method.")
146
- # Fallback: Count frames and divide by video duration
147
  frame_count = len([f for f in os.listdir(frames_folder) if f.endswith('.jpg')])
148
  duration_command = ['ffprobe', '-v', 'error', '-show_entries', 'format=duration', '-of', 'default=noprint_wrappers=1:nokey=1', video_path]
149
  duration = float(subprocess.check_output(duration_command, universal_newlines=True).strip())
@@ -303,17 +299,27 @@ def lstm_anomaly_detection(X, feature_columns, num_anomalies=10, epochs=100, bat
303
  with torch.no_grad():
304
  reconstructed = model(X.unsqueeze(0)).squeeze(0).cpu().numpy()
305
 
306
- mse = np.mean(np.power(X.cpu().numpy() - reconstructed, 2), axis=1)
 
 
 
 
307
 
308
- top_indices = mse.argsort()[-num_anomalies:][::-1]
309
- anomalies = np.zeros(len(mse), dtype=bool)
310
- anomalies[top_indices] = True
 
 
 
 
311
 
312
- return anomalies, mse, top_indices, model
 
 
313
 
314
  def plot_anomaly_scores(df, anomaly_scores, top_indices, title):
315
  fig, ax = plt.subplots(figsize=(16, 8))
316
- bars = ax.bar(range(len(df)), anomaly_scores, width=0.8)
317
  for i in top_indices:
318
  bars[i].set_color('red')
319
  ax.set_xlabel('Timecode')
@@ -325,23 +331,34 @@ def plot_anomaly_scores(df, anomaly_scores, top_indices, title):
325
  plt.tight_layout()
326
  return fig
327
 
328
- def plot_emotion(df, emotion):
329
  fig, ax = plt.subplots(figsize=(16, 8))
330
  values = df[emotion].values
331
- bars = ax.bar(range(len(df)), values, width=0.8)
332
- top_10_indices = np.argsort(values)[-10:]
333
- for i, bar in enumerate(bars):
334
- if i in top_10_indices:
335
- bar.set_color('red')
336
  ax.set_xlabel('Timecode')
337
  ax.set_ylabel(f'{emotion.capitalize()} Score')
338
- ax.set_title(f'{emotion.capitalize()} Scores Over Time')
339
  ax.xaxis.set_major_locator(MaxNLocator(nbins=100))
340
  ticks = ax.get_xticks()
341
  ax.set_xticklabels([df['Timecode'].iloc[int(tick)] if tick >= 0 and tick < len(df) else '' for tick in ticks], rotation=90, ha='right')
342
  plt.tight_layout()
343
  return fig
344
 
 
 
 
 
 
 
 
 
 
 
 
 
345
  def process_video(video_path, num_anomalies, num_components, desired_fps, batch_size, progress=gr.Progress()):
346
  with tempfile.TemporaryDirectory() as temp_dir:
347
  aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces')
@@ -353,10 +370,10 @@ def process_video(video_path, num_anomalies, num_components, desired_fps, batch_
353
  try:
354
  embeddings_by_frame, emotions_by_frame, _, original_fps = extract_and_align_faces_from_video(video_path, aligned_faces_folder, desired_fps)
355
  except Exception as e:
356
- return f"Error extracting faces: {str(e)}", None, None, None, None
357
 
358
  if not embeddings_by_frame:
359
- return "No faces were extracted from the video.", None, None, None, None
360
 
361
  progress(0.3, "Clustering embeddings")
362
  embeddings = list(embeddings_by_frame.values())
@@ -371,25 +388,37 @@ def process_video(video_path, num_anomalies, num_components, desired_fps, batch_
371
  progress(0.6, "Performing anomaly detection")
372
  feature_columns = [col for col in df.columns if col not in ['Frame', 'Timecode', 'Time (Minutes)', 'Embedding_Index']]
373
  try:
374
- anomalies_all, anomaly_scores_all, top_indices_all, _ = lstm_anomaly_detection(df[feature_columns].values, feature_columns, num_anomalies=num_anomalies, batch_size=batch_size)
375
  except Exception as e:
376
- return f"Error in anomaly detection: {str(e)}", None, None, None, None
377
 
378
  progress(0.8, "Generating plots")
379
  try:
380
- anomaly_plot = plot_anomaly_scores(df, anomaly_scores_all, top_indices_all, "All Features")
381
- emotion_plots = [plot_emotion(df, emotion) for emotion in ['fear', 'sad', 'angry']]
 
 
382
  except Exception as e:
383
- return f"Error generating plots: {str(e)}", None, None, None, None
384
 
385
  progress(0.9, "Preparing results")
386
  results = f"Top {num_anomalies} anomalies (All Features):\n"
387
  results += "\n".join([f"{score:.4f} at {timecode}" for score, timecode in
388
  zip(anomaly_scores_all[top_indices_all], df['Timecode'].iloc[top_indices_all].values)])
 
 
 
 
 
 
 
 
 
389
 
390
  progress(1.0, "Complete")
391
- return results, anomaly_plot, emotion_plots[0], emotion_plots[1], emotion_plots[2]
392
-
 
393
  iface = gr.Interface(
394
  fn=process_video,
395
  inputs=[
@@ -401,7 +430,9 @@ iface = gr.Interface(
401
  ],
402
  outputs=[
403
  gr.Textbox(label="Anomaly Detection Results"),
404
- gr.Plot(label="Anomaly Scores"),
 
 
405
  gr.Plot(label="Fear Scores"),
406
  gr.Plot(label="Sad Scores"),
407
  gr.Plot(label="Angry Scores")
@@ -412,9 +443,9 @@ iface = gr.Interface(
412
  It focuses on the most frequently appearing person in the video for analysis.
413
 
414
  Adjust the parameters as needed:
415
- - Number of Anomalies: How many top anomalies to detect in the video
416
- - Number of Components: Complexity of the facial expression model (default = 3)
417
- - Desired FPS: Frames per second to analyze (lower for faster processing - optimal: 10-20)
418
  - Batch Size: Affects processing speed and memory usage
419
 
420
  """
 
19
  import tempfile
20
  import shutil
21
  import subprocess
22
+ import fractions
23
+
24
+ # Suppress TensorFlow warnings
25
  os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
26
+ import tensorflow as tf
27
  tf.get_logger().setLevel('ERROR')
28
 
29
  # Initialize models and other global variables
 
42
  seconds = int(total_seconds % 60)
43
  milliseconds = int((total_seconds - int(total_seconds)) * 1000)
44
  return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}"
45
+
46
  def get_face_embedding_and_emotion(face_img):
47
  face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255
48
  face_tensor = (face_tensor - 0.5) / 0.5
 
101
  print(f"FFmpeg stderr: {e.stderr}")
102
  raise
103
 
 
 
104
  def extract_and_align_faces_from_video(video_path, aligned_faces_folder, desired_fps):
105
  print(f"Processing video: {video_path}")
106
 
 
107
  frames_folder = os.path.join(os.path.dirname(aligned_faces_folder), 'extracted_frames')
108
  extract_frames(video_path, frames_folder, desired_fps)
109
 
 
110
  ffprobe_command = [
111
  'ffprobe',
112
  '-v', 'error',
 
118
  ]
119
  try:
120
  ffprobe_output = subprocess.check_output(ffprobe_command, universal_newlines=True).strip().split(',')
121
+ print(f"FFprobe output: {ffprobe_output}")
122
 
123
  if len(ffprobe_output) != 2:
124
  raise ValueError(f"Unexpected FFprobe output format: {ffprobe_output}")
 
126
  frame_count = ffprobe_output[0]
127
  frame_rate = ffprobe_output[1]
128
 
129
+ print(f"Frame count (raw): {frame_count}")
130
+ print(f"Frame rate (raw): {frame_rate}")
131
 
 
132
  try:
133
  frame_count = int(frame_count)
134
  except ValueError:
135
  print(f"Warning: Could not convert frame count '{frame_count}' to int. Using fallback method.")
136
  frame_count = len([f for f in os.listdir(frames_folder) if f.endswith('.jpg')])
137
 
 
138
  try:
139
  frac = fractions.Fraction(frame_rate)
140
  original_fps = float(frac.numerator) / float(frac.denominator)
141
  except (ValueError, ZeroDivisionError):
142
  print(f"Warning: Could not convert frame rate '{frame_rate}' to float. Using fallback method.")
 
143
  frame_count = len([f for f in os.listdir(frames_folder) if f.endswith('.jpg')])
144
  duration_command = ['ffprobe', '-v', 'error', '-show_entries', 'format=duration', '-of', 'default=noprint_wrappers=1:nokey=1', video_path]
145
  duration = float(subprocess.check_output(duration_command, universal_newlines=True).strip())
 
299
  with torch.no_grad():
300
  reconstructed = model(X.unsqueeze(0)).squeeze(0).cpu().numpy()
301
 
302
+ # Compute anomalies for all features
303
+ mse_all = np.mean(np.power(X.cpu().numpy() - reconstructed, 2), axis=1)
304
+ top_indices_all = mse_all.argsort()[-num_anomalies:][::-1]
305
+ anomalies_all = np.zeros(len(mse_all), dtype=bool)
306
+ anomalies_all[top_indices_all] = True
307
 
308
+ # Compute anomalies for components only
309
+ component_columns = [col for col in feature_columns if col.startswith('Comp')]
310
+ component_indices = [feature_columns.index(col) for col in component_columns]
311
+ mse_comp = np.mean(np.power(X.cpu().numpy()[:, component_indices] - reconstructed[:, component_indices], 2), axis=1)
312
+ top_indices_comp = mse_comp.argsort()[-num_anomalies:][::-1]
313
+ anomalies_comp = np.zeros(len(mse_comp), dtype=bool)
314
+ anomalies_comp[top_indices_comp] = True
315
 
316
+ return (anomalies_all, mse_all, top_indices_all,
317
+ anomalies_comp, mse_comp, top_indices_comp,
318
+ model)
319
 
320
  def plot_anomaly_scores(df, anomaly_scores, top_indices, title):
321
  fig, ax = plt.subplots(figsize=(16, 8))
322
+ bars = ax.bar(range(len(df)), anomaly_scores, width=0.8, color='skyblue')
323
  for i in top_indices:
324
  bars[i].set_color('red')
325
  ax.set_xlabel('Timecode')
 
331
  plt.tight_layout()
332
  return fig
333
 
334
+ def plot_emotion(df, emotion, num_anomalies):
335
  fig, ax = plt.subplots(figsize=(16, 8))
336
  values = df[emotion].values
337
+ bars = ax.bar(range(len(df)), values, width=0.8, color='lightgreen')
338
+ top_indices = np.argsort(values)[-num_anomalies:][::-1]
339
+ for i in top_indices:
340
+ bars[i].set_color('red')
 
341
  ax.set_xlabel('Timecode')
342
  ax.set_ylabel(f'{emotion.capitalize()} Score')
343
+ ax.set_title(f'{emotion.capitalize()} Scores Over Time (Top {num_anomalies} in Red)')
344
  ax.xaxis.set_major_locator(MaxNLocator(nbins=100))
345
  ticks = ax.get_xticks()
346
  ax.set_xticklabels([df['Timecode'].iloc[int(tick)] if tick >= 0 and tick < len(df) else '' for tick in ticks], rotation=90, ha='right')
347
  plt.tight_layout()
348
  return fig
349
 
350
+ def plot_components(df):
351
+ fig, ax = plt.subplots(figsize=(16, 8))
352
+ component_columns = [col for col in df.columns if col.startswith('Comp')]
353
+ for col in component_columns:
354
+ ax.plot(df['Time (Minutes)'], df[col], label=col)
355
+ ax.set_xlabel('Time (Minutes)')
356
+ ax.set_ylabel('Component Value')
357
+ ax.set_title('UMAP Components Over Time')
358
+ ax.legend()
359
+ plt.tight_layout()
360
+ return fig
361
+
362
  def process_video(video_path, num_anomalies, num_components, desired_fps, batch_size, progress=gr.Progress()):
363
  with tempfile.TemporaryDirectory() as temp_dir:
364
  aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces')
 
370
  try:
371
  embeddings_by_frame, emotions_by_frame, _, original_fps = extract_and_align_faces_from_video(video_path, aligned_faces_folder, desired_fps)
372
  except Exception as e:
373
+ return f"Error extracting faces: {str(e)}", None, None, None, None, None, None
374
 
375
  if not embeddings_by_frame:
376
+ return "No faces were extracted from the video.", None, None, None, None, None, None
377
 
378
  progress(0.3, "Clustering embeddings")
379
  embeddings = list(embeddings_by_frame.values())
 
388
  progress(0.6, "Performing anomaly detection")
389
  feature_columns = [col for col in df.columns if col not in ['Frame', 'Timecode', 'Time (Minutes)', 'Embedding_Index']]
390
  try:
391
+ anomalies_all, anomaly_scores_all, top_indices_all, anomalies_comp, anomaly_scores_comp, top_indices_comp, _ = lstm_anomaly_detection(df[feature_columns].values, feature_columns, num_anomalies=num_anomalies, batch_size=batch_size)
392
  except Exception as e:
393
+ return f"Error in anomaly detection: {str(e)}", None, None, None, None, None, None
394
 
395
  progress(0.8, "Generating plots")
396
  try:
397
+ anomaly_plot_all = plot_anomaly_scores(df, anomaly_scores_all, top_indices_all, "All Features")
398
+ anomaly_plot_comp = plot_anomaly_scores(df, anomaly_scores_comp, top_indices_comp, "Components Only")
399
+ components_plot = plot_components(df)
400
+ emotion_plots = [plot_emotion(df, emotion, num_anomalies) for emotion in ['fear', 'sad', 'angry']]
401
  except Exception as e:
402
+ return f"Error generating plots: {str(e)}", None, None, None, None, None, None
403
 
404
  progress(0.9, "Preparing results")
405
  results = f"Top {num_anomalies} anomalies (All Features):\n"
406
  results += "\n".join([f"{score:.4f} at {timecode}" for score, timecode in
407
  zip(anomaly_scores_all[top_indices_all], df['Timecode'].iloc[top_indices_all].values)])
408
+ results += f"\n\nTop {num_anomalies} anomalies (Components Only):\n"
409
+ results += "\n".join([f"{score:.4f} at {timecode}" for score, timecode in
410
+ zip(anomaly_scores_comp[top_indices_comp], df['Timecode'].iloc[top_indices_comp].values)])
411
+
412
+ # Add top emotion scores to results
413
+ for emotion in ['fear', 'sad', 'angry']:
414
+ top_indices = np.argsort(df[emotion].values)[-num_anomalies:][::-1]
415
+ results += f"\n\nTop {num_anomalies} {emotion.capitalize()} Scores:\n"
416
+ results += "\n".join([f"{df[emotion].iloc[i]:.4f} at {df['Timecode'].iloc[i]}" for i in top_indices])
417
 
418
  progress(1.0, "Complete")
419
+ return results, anomaly_plot_all, anomaly_plot_comp, components_plot, *emotion_plots
420
+
421
+ # Gradio interface
422
  iface = gr.Interface(
423
  fn=process_video,
424
  inputs=[
 
430
  ],
431
  outputs=[
432
  gr.Textbox(label="Anomaly Detection Results"),
433
+ gr.Plot(label="Anomaly Scores (All Features)"),
434
+ gr.Plot(label="Anomaly Scores (Components Only)"),
435
+ gr.Plot(label="UMAP Components"),
436
  gr.Plot(label="Fear Scores"),
437
  gr.Plot(label="Sad Scores"),
438
  gr.Plot(label="Angry Scores")
 
443
  It focuses on the most frequently appearing person in the video for analysis.
444
 
445
  Adjust the parameters as needed:
446
+ - Number of Anomalies: How many top anomalies or high intensities to highlight
447
+ - Number of Components: Complexity of the facial expression model
448
+ - Desired FPS: Frames per second to analyze (lower for faster processing)
449
  - Batch Size: Affects processing speed and memory usage
450
 
451
  """