reab5555 commited on
Commit
01f0185
·
verified ·
1 Parent(s): 8efc195

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -11
app.py CHANGED
@@ -14,7 +14,6 @@ import umap
14
  import pandas as pd
15
  import matplotlib
16
  import matplotlib.pyplot as plt
17
- from matplotlib.ticker import MaxNLocator
18
  from moviepy.editor import VideoFileClip
19
  from PIL import Image
20
  import gradio as gr
@@ -22,7 +21,6 @@ import tempfile
22
  import shutil
23
 
24
 
25
-
26
  # Suppress TensorFlow warnings
27
  os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
28
  import tensorflow as tf
@@ -119,7 +117,7 @@ def extract_frames(video_path, output_folder, desired_fps, progress_callback=Non
119
 
120
  # Report progress
121
  if progress_callback:
122
- progress = min(100, (frame_count / total_frames_to_extract) * 100) # Ensure it doesn't exceed 100%
123
  progress_callback(progress, f"Extracting frame")
124
 
125
  if frame_count >= total_frames_to_extract:
@@ -485,9 +483,6 @@ def process_video(video_path, num_anomalies, num_components, desired_fps, batch_
485
  except Exception as e:
486
  return f"Error generating plots: {str(e)}", None, None, None, None, None, None, None, None, None
487
 
488
- # Get a random face sample
489
- face_sample = get_random_face_sample(organized_faces_folder, largest_cluster, output_folder)
490
-
491
  progress(1.0, "Preparing results")
492
  results = f"Top {num_anomalies} anomalies (All Features):\n"
493
  results += "\n".join([f"{score:.4f} at {timecode}" for score, timecode in
@@ -501,17 +496,19 @@ def process_video(video_path, num_anomalies, num_components, desired_fps, batch_
501
  results += f"\n\nTop {num_anomalies} {emotion.capitalize()} Scores:\n"
502
  results += "\n".join([f"{df[emotion].iloc[i]:.4f} at {df['Timecode'].iloc[i]}" for i in top_indices])
503
 
 
 
 
504
  return (
505
- results, # Text results to a Textbox
506
- face_sample, # Random face sample image
507
  anomaly_plot_all,
508
  anomaly_plot_comp,
509
- *emotion_plots
 
510
  )
511
 
512
- # Gradio interface
513
-
514
 
 
515
  iface = gr.Interface(
516
  fn=process_video,
517
  inputs=[
 
14
  import pandas as pd
15
  import matplotlib
16
  import matplotlib.pyplot as plt
 
17
  from moviepy.editor import VideoFileClip
18
  from PIL import Image
19
  import gradio as gr
 
21
  import shutil
22
 
23
 
 
24
  # Suppress TensorFlow warnings
25
  os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
26
  import tensorflow as tf
 
117
 
118
  # Report progress
119
  if progress_callback:
120
+ progress = min(100, (frame_count / total_frames_to_extract) * 100)
121
  progress_callback(progress, f"Extracting frame")
122
 
123
  if frame_count >= total_frames_to_extract:
 
483
  except Exception as e:
484
  return f"Error generating plots: {str(e)}", None, None, None, None, None, None, None, None, None
485
 
 
 
 
486
  progress(1.0, "Preparing results")
487
  results = f"Top {num_anomalies} anomalies (All Features):\n"
488
  results += "\n".join([f"{score:.4f} at {timecode}" for score, timecode in
 
496
  results += f"\n\nTop {num_anomalies} {emotion.capitalize()} Scores:\n"
497
  results += "\n".join([f"{df[emotion].iloc[i]:.4f} at {df['Timecode'].iloc[i]}" for i in top_indices])
498
 
499
+ # Get a random face sample
500
+ face_sample = get_random_face_sample(organized_faces_folder, largest_cluster, output_folder)
501
+
502
  return (
503
+ results,
 
504
  anomaly_plot_all,
505
  anomaly_plot_comp,
506
+ *emotion_plots,
507
+ face_sample
508
  )
509
 
 
 
510
 
511
+ # Gradio interface
512
  iface = gr.Interface(
513
  fn=process_video,
514
  inputs=[