reab5555 commited on
Commit
8efc195
·
verified ·
1 Parent(s): b3240ab

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +94 -48
app.py CHANGED
@@ -4,7 +4,7 @@ import numpy as np
4
  import torch
5
  import torch.nn as nn
6
  import torch.optim as optim
7
- import torchvision
8
  from facenet_pytorch import InceptionResnetV1, MTCNN
9
  import mediapipe as mp
10
  from fer import FER
@@ -12,6 +12,7 @@ from sklearn.cluster import KMeans
12
  from sklearn.preprocessing import StandardScaler, MinMaxScaler
13
  import umap
14
  import pandas as pd
 
15
  import matplotlib.pyplot as plt
16
  from matplotlib.ticker import MaxNLocator
17
  from moviepy.editor import VideoFileClip
@@ -19,8 +20,7 @@ from PIL import Image
19
  import gradio as gr
20
  import tempfile
21
  import shutil
22
- import subprocess
23
- import fractions
24
 
25
 
26
  # Suppress TensorFlow warnings
@@ -29,6 +29,9 @@ import tensorflow as tf
29
 
30
  tf.get_logger().setLevel('ERROR')
31
 
 
 
 
32
  # Initialize models and other global variables
33
  device = 'cuda'
34
 
@@ -40,8 +43,8 @@ face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_
40
  emotion_detector = FER(mtcnn=False)
41
 
42
 
43
- def frame_to_timecode(frame_num, original_fps, desired_fps):
44
- total_seconds = frame_num / original_fps
45
  hours = int(total_seconds // 3600)
46
  minutes = int((total_seconds % 3600) // 60)
47
  seconds = int(total_seconds % 60)
@@ -116,8 +119,8 @@ def extract_frames(video_path, output_folder, desired_fps, progress_callback=Non
116
 
117
  # Report progress
118
  if progress_callback:
119
- progress = frame_count / total_frames_to_extract
120
- progress_callback(progress, f"Extracting frame {frame_count} of {total_frames_to_extract}")
121
 
122
  if frame_count >= total_frames_to_extract:
123
  break
@@ -190,7 +193,7 @@ def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder
190
 
191
 
192
  def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, output_folder,
193
- num_components):
194
  emotions = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']
195
  person_data = {}
196
 
@@ -215,8 +218,9 @@ def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, de
215
  scaler = MinMaxScaler(feature_range=(0, 1))
216
  embeddings_reduced_normalized = scaler.fit_transform(embeddings_reduced)
217
 
218
- timecodes = [frame_to_timecode(frame, original_fps, desired_fps) for frame in frames]
219
- times_in_minutes = [frame / (original_fps * 60) for frame in frames]
 
220
 
221
  df_data = {
222
  'Frame': frames,
@@ -253,7 +257,7 @@ class LSTMAutoencoder(nn.Module):
253
 
254
 
255
  def lstm_anomaly_detection(X, feature_columns, num_anomalies=10, epochs=100, batch_size=64):
256
- device = 'cuda' if torch.cuda.is_available() else 'cpu'
257
 
258
  X = torch.FloatTensor(X).to(device)
259
 
@@ -316,42 +320,80 @@ def lstm_anomaly_detection(X, feature_columns, num_anomalies=10, epochs=100, bat
316
  model)
317
 
318
 
319
- def plot_anomaly_scores(df, anomaly_scores, top_indices, title):
 
320
  fig, ax = plt.subplots(figsize=(16, 8))
321
- bars = ax.bar(range(len(df)), anomaly_scores, width=0.8, color='skyblue')
322
- for i in top_indices:
323
- bars[i].set_color('red')
324
- ax.set_xlabel('Timecode')
325
- ax.set_ylabel('Anomaly Score')
326
- ax.set_title(f'Anomaly Scores Over Time ({title})')
327
- ax.xaxis.set_major_locator(MaxNLocator(nbins=100))
328
- ticks = ax.get_xticks()
329
- ax.set_xticklabels([df['Timecode'].iloc[int(tick)] if tick >= 0 and tick < len(df) else '' for tick in ticks],
330
- rotation=90, ha='right')
331
- plt.tight_layout()
332
- return fig
333
 
 
 
 
334
 
335
- def plot_emotion(df, emotion, num_anomalies, color):
336
- fig, ax = plt.subplots(figsize=(16, 8))
337
- values = df[emotion].values
338
- bars = ax.bar(range(len(df)), values, width=0.9, color=color)
339
- top_indices = np.argsort(values)[-num_anomalies:][::-1]
340
- for i in top_indices:
341
- bars[i].set_color('red')
342
- ax.set_xlabel('Timecode')
 
 
 
 
 
 
 
 
 
 
 
 
 
343
  ax.set_ylabel(f'{emotion.capitalize()} Score')
344
- ax.set_title(f'{emotion.capitalize()} Anomalies Over Time (Top {num_anomalies} in Red)')
345
- ax.xaxis.set_major_locator(MaxNLocator(nbins=100))
346
- ticks = ax.get_xticks()
347
- ax.set_xticklabels([df['Timecode'].iloc[int(tick)] if tick >= 0 and tick < len(df) else '' for tick in ticks],
348
- rotation=90, ha='right')
349
  plt.tight_layout()
350
  return fig
351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
352
 
353
- import base64
 
354
 
 
 
355
 
356
  def get_random_face_sample(organized_faces_folder, largest_cluster, output_folder):
357
  person_folder = os.path.join(organized_faces_folder, f"person_{largest_cluster}")
@@ -363,7 +405,7 @@ def get_random_face_sample(organized_faces_folder, largest_cluster, output_folde
363
 
364
  # Read the image and resize it to be smaller
365
  face_img = cv2.imread(face_path)
366
- small_face = cv2.resize(face_img, (100, 100)) # Resize to NxN pixels
367
  cv2.imwrite(output_path, small_face)
368
 
369
  return output_path
@@ -380,16 +422,20 @@ def process_video(video_path, num_anomalies, num_components, desired_fps, batch_
380
  os.makedirs(aligned_faces_folder, exist_ok=True)
381
  os.makedirs(organized_faces_folder, exist_ok=True)
382
 
383
- progress(0.05, "Starting frame extraction")
 
 
 
 
 
384
  frames_folder = os.path.join(temp_dir, 'extracted_frames')
385
 
386
  def extraction_progress(percent, message):
387
- # Adjust the progress to fit within the 5% to 30% range of the overall process
388
- overall_progress = 0.05 + (percent * 0.25)
389
- progress(overall_progress, message)
390
 
391
  frame_count, original_fps = extract_frames(video_path, frames_folder, desired_fps, extraction_progress)
392
 
 
393
 
394
  progress(0.3, "Processing frames")
395
  embeddings_by_frame, emotions_by_frame = process_frames(frames_folder, aligned_faces_folder, frame_count,
@@ -407,7 +453,7 @@ def process_video(video_path, num_anomalies, num_components, desired_fps, batch_
407
 
408
  progress(0.8, "Saving person data")
409
  df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps,
410
- original_fps, temp_dir, num_components)
411
 
412
  progress(0.9, "Performing anomaly detection")
413
  feature_columns = [col for col in df.columns if
@@ -472,12 +518,11 @@ iface = gr.Interface(
472
  gr.Video(),
473
  gr.Slider(minimum=1, maximum=20, step=1, value=5, label="Number of Anomalies"),
474
  gr.Slider(minimum=1, maximum=20, step=1, value=10, label="Number of Components"),
475
- gr.Slider(minimum=1, maximum=30, step=1, value=20, label="Desired FPS"),
476
- gr.Slider(minimum=1, maximum=64, step=1, value=16, label="Batch Size")
477
  ],
478
  outputs=[
479
  gr.Textbox(label="Anomaly Detection Results"),
480
- gr.Image(type="filepath", label="Random Face Sample of Most Frequent Person"),
481
  gr.Plot(label="Anomaly Scores (All Features)"),
482
  gr.Plot(label="Anomaly Scores (Components Only)"),
483
  gr.Plot(label="Fear Anomalies"),
@@ -485,7 +530,8 @@ iface = gr.Interface(
485
  gr.Plot(label="Angry Anomalies"),
486
  gr.Plot(label="Happy Anomalies"),
487
  gr.Plot(label="Surprise Anomalies"),
488
- gr.Plot(label="Neutral Anomalies")
 
489
  ],
490
  title="Facial Expressions Anomaly Detection",
491
  description="""
 
4
  import torch
5
  import torch.nn as nn
6
  import torch.optim as optim
7
+ import seaborn as sns
8
  from facenet_pytorch import InceptionResnetV1, MTCNN
9
  import mediapipe as mp
10
  from fer import FER
 
12
  from sklearn.preprocessing import StandardScaler, MinMaxScaler
13
  import umap
14
  import pandas as pd
15
+ import matplotlib
16
  import matplotlib.pyplot as plt
17
  from matplotlib.ticker import MaxNLocator
18
  from moviepy.editor import VideoFileClip
 
20
  import gradio as gr
21
  import tempfile
22
  import shutil
23
+
 
24
 
25
 
26
  # Suppress TensorFlow warnings
 
29
 
30
  tf.get_logger().setLevel('ERROR')
31
 
32
+ matplotlib.rcParams['figure.dpi'] = 400
33
+ matplotlib.rcParams['savefig.dpi'] = 400
34
+
35
  # Initialize models and other global variables
36
  device = 'cuda'
37
 
 
43
  emotion_detector = FER(mtcnn=False)
44
 
45
 
46
+ def frame_to_timecode(frame_num, total_frames, duration):
47
+ total_seconds = (frame_num / total_frames) * duration
48
  hours = int(total_seconds // 3600)
49
  minutes = int((total_seconds % 3600) // 60)
50
  seconds = int(total_seconds % 60)
 
119
 
120
  # Report progress
121
  if progress_callback:
122
+ progress = min(100, (frame_count / total_frames_to_extract) * 100) # Ensure it doesn't exceed 100%
123
+ progress_callback(progress, f"Extracting frame")
124
 
125
  if frame_count >= total_frames_to_extract:
126
  break
 
193
 
194
 
195
  def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, output_folder,
196
+ num_components, video_duration):
197
  emotions = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']
198
  person_data = {}
199
 
 
218
  scaler = MinMaxScaler(feature_range=(0, 1))
219
  embeddings_reduced_normalized = scaler.fit_transform(embeddings_reduced)
220
 
221
+ total_frames = max(frames)
222
+ timecodes = [frame_to_timecode(frame, total_frames, video_duration) for frame in frames]
223
+ times_in_minutes = [frame / total_frames * video_duration / 60 for frame in frames]
224
 
225
  df_data = {
226
  'Frame': frames,
 
257
 
258
 
259
  def lstm_anomaly_detection(X, feature_columns, num_anomalies=10, epochs=100, batch_size=64):
260
+ device = 'cuda'
261
 
262
  X = torch.FloatTensor(X).to(device)
263
 
 
320
  model)
321
 
322
 
323
+ def plot_emotion(df, emotion, num_anomalies, color):
324
+ plt.figure(figsize=(16, 8), dpi=400) # Increase DPI for higher quality
325
  fig, ax = plt.subplots(figsize=(16, 8))
 
 
 
 
 
 
 
 
 
 
 
 
326
 
327
+ # Convert timecodes to seconds for proper plotting
328
+ df['Seconds'] = df['Timecode'].apply(
329
+ lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
330
 
331
+ # Create a DataFrame for seaborn
332
+ plot_df = pd.DataFrame({
333
+ 'Seconds': df['Seconds'],
334
+ 'Emotion Score': df[emotion]
335
+ })
336
+
337
+ # Plot using seaborn
338
+ sns.lineplot(x='Seconds', y='Emotion Score', data=plot_df, ax=ax, color=color)
339
+
340
+ # Highlight top anomalies
341
+ top_indices = np.argsort(df[emotion].values)[-num_anomalies:][::-1]
342
+ ax.scatter(df['Seconds'].iloc[top_indices], df[emotion].iloc[top_indices], color='red', s=50, zorder=5)
343
+
344
+ # Set x-axis
345
+ max_seconds = df['Seconds'].max()
346
+ ax.set_xlim(0, max_seconds)
347
+ num_ticks = 80 # Reduce number of ticks for emotion graphs
348
+ ax.set_xticks(np.linspace(0, max_seconds, num_ticks))
349
+ ax.set_xticklabels([f"{int(x // 60):02d}:{int(x % 60):02d}" for x in ax.get_xticks()], rotation=90, ha='right')
350
+
351
+ ax.set_xlabel('Time')
352
  ax.set_ylabel(f'{emotion.capitalize()} Score')
353
+ ax.set_title(f'{emotion.capitalize()} Scores Over Time (Top {num_anomalies} in Red)')
354
+
355
+ # Add grid
356
+ ax.grid(True, linestyle='--', alpha=0.7)
357
+
358
  plt.tight_layout()
359
  return fig
360
 
361
+ def plot_anomaly_scores(df, anomaly_scores, top_indices, title):
362
+ plt.figure(figsize=(16, 8), dpi=400) # Increase DPI for higher quality
363
+ fig, ax = plt.subplots(figsize=(16, 8))
364
+
365
+ # Convert timecodes to seconds for proper plotting
366
+ df['Seconds'] = df['Timecode'].apply(
367
+ lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
368
+
369
+ # Create a DataFrame for seaborn
370
+ plot_df = pd.DataFrame({
371
+ 'Seconds': df['Seconds'],
372
+ 'Anomaly Score': anomaly_scores
373
+ })
374
+
375
+ # Plot using seaborn
376
+ sns.lineplot(x='Seconds', y='Anomaly Score', data=plot_df, ax=ax)
377
+
378
+ # Highlight top anomalies
379
+ ax.scatter(df['Seconds'].iloc[top_indices], anomaly_scores[top_indices], color='red', s=50, zorder=5)
380
+
381
+ # Set x-axis
382
+ max_seconds = df['Seconds'].max()
383
+ ax.set_xlim(0, max_seconds)
384
+ num_ticks = 80 # Increase number of ticks for anomaly score graphs
385
+ ax.set_xticks(np.linspace(0, max_seconds, num_ticks))
386
+ ax.set_xticklabels([f"{int(x // 60):02d}:{int(x % 60):02d}" for x in ax.get_xticks()], rotation=90, ha='right')
387
+
388
+ ax.set_xlabel('Time')
389
+ ax.set_ylabel('Anomaly Score')
390
+ ax.set_title(f'Anomaly Scores Over Time ({title})')
391
 
392
+ # Add grid
393
+ ax.grid(True, linestyle='--', alpha=0.7)
394
 
395
+ plt.tight_layout()
396
+ return fig
397
 
398
  def get_random_face_sample(organized_faces_folder, largest_cluster, output_folder):
399
  person_folder = os.path.join(organized_faces_folder, f"person_{largest_cluster}")
 
405
 
406
  # Read the image and resize it to be smaller
407
  face_img = cv2.imread(face_path)
408
+ small_face = cv2.resize(face_img, (160, 160)) # Resize to NxN pixels
409
  cv2.imwrite(output_path, small_face)
410
 
411
  return output_path
 
422
  os.makedirs(aligned_faces_folder, exist_ok=True)
423
  os.makedirs(organized_faces_folder, exist_ok=True)
424
 
425
+
426
+ clip = VideoFileClip(video_path)
427
+ video_duration = clip.duration
428
+ clip.close()
429
+
430
+ progress(0, "Starting frame extraction")
431
  frames_folder = os.path.join(temp_dir, 'extracted_frames')
432
 
433
  def extraction_progress(percent, message):
434
+ progress(percent / 100, f"Extracting frames")
 
 
435
 
436
  frame_count, original_fps = extract_frames(video_path, frames_folder, desired_fps, extraction_progress)
437
 
438
+ progress(1, "Frame extraction complete")
439
 
440
  progress(0.3, "Processing frames")
441
  embeddings_by_frame, emotions_by_frame = process_frames(frames_folder, aligned_faces_folder, frame_count,
 
453
 
454
  progress(0.8, "Saving person data")
455
  df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps,
456
+ original_fps, temp_dir, num_components, video_duration)
457
 
458
  progress(0.9, "Performing anomaly detection")
459
  feature_columns = [col for col in df.columns if
 
518
  gr.Video(),
519
  gr.Slider(minimum=1, maximum=20, step=1, value=5, label="Number of Anomalies"),
520
  gr.Slider(minimum=1, maximum=20, step=1, value=10, label="Number of Components"),
521
+ gr.Slider(minimum=1, maximum=20, step=1, value=10, label="Desired FPS"),
522
+ gr.Slider(minimum=1, maximum=64, step=1, value=8, label="Batch Size")
523
  ],
524
  outputs=[
525
  gr.Textbox(label="Anomaly Detection Results"),
 
526
  gr.Plot(label="Anomaly Scores (All Features)"),
527
  gr.Plot(label="Anomaly Scores (Components Only)"),
528
  gr.Plot(label="Fear Anomalies"),
 
530
  gr.Plot(label="Angry Anomalies"),
531
  gr.Plot(label="Happy Anomalies"),
532
  gr.Plot(label="Surprise Anomalies"),
533
+ gr.Plot(label="Neutral Anomalies"),
534
+ gr.Image(type="filepath", label="Random Face Sample of Most Frequent Person"),
535
  ],
536
  title="Facial Expressions Anomaly Detection",
537
  description="""