Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,367 Bytes
2fd5bd1 98b3127 9b7753f 1723a69 2fd5bd1 7be8c80 554fad9 98b3127 f6921b0 554fad9 2fd5bd1 c0e4160 2fd5bd1 c0e4160 2fd5bd1 c0e4160 98b3127 9aae468 2fd5bd1 8b40745 2fd5bd1 096a9e5 2fd5bd1 b5fa3d2 98b3127 f80d9ec 98b3127 f80d9ec 417aebf c0e4160 98b3127 1315b05 b5fa3d2 10268d7 2fd5bd1 98b3127 15cf306 c0e4160 2fd5bd1 c0e4160 2fd5bd1 c0e4160 2fd5bd1 0db2908 2fd5bd1 725717f 2fd5bd1 79ebb83 c0e4160 0db2908 c0e4160 f97da0a 554fad9 c0e4160 0db2908 c7abc95 7291b44 ad1ae32 c0e4160 98b3127 33c2684 80de712 cfe6e5f 80de712 98b3127 80de712 cfe6e5f 2fd5bd1 c0e4160 2fd5bd1 c0e4160 9353b81 c0e4160 9353b81 c0e4160 9353b81 c0e4160 9353b81 e7a29cf 2fd5bd1 c0e4160 2fd5bd1 c0e4160 2fd5bd1 1baebc0 0db2908 2fd5bd1 a88ebfb 0db2908 2fd5bd1 9353b81 2fd5bd1 c0e4160 2fd5bd1 c0e4160 2fd5bd1 a2679e2 2fd5bd1 c0e4160 2fd5bd1 c0e4160 2fd5bd1 c0e4160 4547e26 c0e4160 4547e26 c0e4160 4547e26 c0e4160 2fd5bd1 0db2908 2fd5bd1 4547e26 2fd5bd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
import spaces
import gradio as gr
import numpy as np
import random
import torch
from diffusers import StableDiffusion3Pipeline
#from transformers import CLIPTextModelWithProjection, T5EncoderModel
from transformers import CLIPTokenizer, T5TokenizerFast
import re
import paramiko
import urllib
import time
import os
from image_gen_aux import UpscaleWithModel
from huggingface_hub import hf_hub_download
#from diffusers import SD3Transformer2DModel, AutoencoderKL
#from models.transformer_sd3 import SD3Transformer2DModel
#from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
from PIL import Image
FTP_HOST = "1ink.us"
FTP_USER = "ford442"
FTP_PASS = "GoogleBez12!"
FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
#torch.backends.cuda.preferred_blas_library="cublas"
#torch.backends.cuda.preferred_linalg_library="cusolver"
hftoken = os.getenv("HF_AUTH_TOKEN")
def upload_to_ftp(filename):
try:
transport = paramiko.Transport((FTP_HOST, 22))
destination_path=FTP_DIR+filename
transport.connect(username = FTP_USER, password = FTP_PASS)
sftp = paramiko.SFTPClient.from_transport(transport)
sftp.put(filename, destination_path)
sftp.close()
transport.close()
print(f"Uploaded {filename} to FTP server")
except Exception as e:
print(f"FTP upload error: {e}")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch_dtype = torch.bfloat16
pipe = StableDiffusion3Pipeline.from_pretrained(
#"stabilityai # stable-diffusion-3.5-large",
"ford442/stable-diffusion-3.5-large-bf16",
# vae=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", use_safetensors=True, subfolder='vae',token=True),
#scheduler = FlowMatchHeunDiscreteScheduler.from_pretrained('ford442/stable-diffusion-3.5-large-bf16', subfolder='scheduler',token=True),
# text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
# text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
# text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
#tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
#tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
#tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", use_fast=True, subfolder="tokenizer_3", token=True),
torch_dtype=torch.bfloat16,
#use_safetensors=False,
)
#pipe.to(device=device, dtype=torch.bfloat16)
#pipe.enable_model_cpu_offload()
pipe.to(device)
#pipe.to(device=device, dtype=torch.bfloat16)
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device('cpu'))
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096
@spaces.GPU(duration=30)
def infer_30(
prompt,
negative_prompt_1,
negative_prompt_2,
negative_prompt_3,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
torch.set_float32_matmul_precision("highest")
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
print('-- generating image --')
sd_image = pipe(
prompt=prompt,
prompt_2=prompt,
prompt_3=prompt,
negative_prompt=negative_prompt_1,
negative_prompt_2=negative_prompt_2,
negative_prompt_3=negative_prompt_3,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
max_sequence_length=512
).images[0]
print('-- got image --')
sd35_path = f"sd35l_{seed}.png"
sd_image.save(sd35_path,optimize=False,compress_level=0)
upload_to_ftp(sd35_path)
# pipe.unet.to('cpu')
upscaler_2.to(torch.device('cuda'))
with torch.no_grad():
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
print('-- got upscaled image --')
downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
upscale_path = f"sd35l_upscale_{seed}.png"
downscale2.save(upscale_path,optimize=False,compress_level=0)
upload_to_ftp(upscale_path)
return sd_image, seed, enhanced_prompt
@spaces.GPU(duration=60)
def infer_60(
prompt,
negative_prompt_1,
negative_prompt_2,
negative_prompt_3,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
torch.set_float32_matmul_precision("highest")
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
print('-- generating image --')
sd_image = pipe(
prompt=prompt,
prompt_2=prompt,
prompt_3=prompt,
negative_prompt=negative_prompt_1,
negative_prompt_2=negative_prompt_2,
negative_prompt_3=negative_prompt_3,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
max_sequence_length=512
).images[0]
print('-- got image --')
sd35_path = f"sd35l_{seed}.png"
sd_image.save(sd35_path,optimize=False,compress_level=0)
upload_to_ftp(sd35_path)
# pipe.unet.to('cpu')
upscaler_2.to(torch.device('cuda'))
with torch.no_grad():
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
print('-- got upscaled image --')
downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
upscale_path = f"sd35l_upscale_{seed}.png"
downscale2.save(upscale_path,optimize=False,compress_level=0)
upload_to_ftp(upscale_path)
return sd_image, seed, enhanced_prompt
@spaces.GPU(duration=90)
def infer_90(
prompt,
negative_prompt_1,
negative_prompt_2,
negative_prompt_3,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
torch.set_float32_matmul_precision("highest")
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
print('-- generating image --')
sd_image = pipe(
prompt=prompt,
prompt_2=prompt,
prompt_3=prompt,
negative_prompt=negative_prompt_1,
negative_prompt_2=negative_prompt_2,
negative_prompt_3=negative_prompt_3,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
max_sequence_length=512
).images[0]
print('-- got image --')
sd35_path = f"sd35l_{seed}.png"
sd_image.save(sd35_path,optimize=False,compress_level=0)
upload_to_ftp(sd35_path)
# pipe.unet.to('cpu')
upscaler_2.to(torch.device('cuda'))
with torch.no_grad():
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
print('-- got upscaled image --')
downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
upscale_path = f"sd35l_upscale_{seed}.png"
downscale2.save(upscale_path,optimize=False,compress_level=0)
upload_to_ftp(upscale_path)
return sd_image, seed, enhanced_prompt
@spaces.GPU(duration=100)
def infer_100(
prompt,
negative_prompt_1,
negative_prompt_2,
negative_prompt_3,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
torch.set_float32_matmul_precision("highest")
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
print('-- generating image --')
sd_image = pipe(
prompt=prompt,
prompt_2=prompt,
prompt_3=prompt,
negative_prompt=negative_prompt_1,
negative_prompt_2=negative_prompt_2,
negative_prompt_3=negative_prompt_3,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
max_sequence_length=512
).images[0]
print('-- got image --')
sd35_path = f"sd35l_{seed}.png"
sd_image.save(sd35_path,optimize=False,compress_level=0)
upload_to_ftp(sd35_path)
# pipe.unet.to('cpu')
upscaler_2.to(torch.device('cuda'))
with torch.no_grad():
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
print('-- got upscaled image --')
downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
upscale_path = f"sd35l_upscale_{seed}.png"
downscale2.save(upscale_path,optimize=False,compress_level=0)
upload_to_ftp(upscale_path)
return sd_image, seed, enhanced_prompt
css = """
#col-container {margin: 0 auto;max-width: 640px;}
body{background-color: blue;}
"""
with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image StableDiffusion 3.5 Large")
expanded_prompt_output = gr.Textbox(label="Prompt", lines=1) # Add this line
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button_30 = gr.Button("Run 30", scale=0, variant="primary")
run_button_60 = gr.Button("Run 60", scale=0, variant="primary")
run_button_90 = gr.Button("Run 90", scale=0, variant="primary")
run_button_100 = gr.Button("Run 100", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=True):
negative_prompt_1 = gr.Text(
label="Negative prompt 1",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
value="bad anatomy, poorly drawn hands, distorted face, blurry, out of frame, low resolution, grainy, pixelated, disfigured, mutated, extra limbs, bad composition"
)
negative_prompt_2 = gr.Text(
label="Negative prompt 2",
max_lines=1,
placeholder="Enter a second negative prompt",
visible=True,
value="unrealistic, cartoon, anime, sketch, painting, drawing, illustration, graphic, digital art, render, 3d, blurry, deformed, disfigured, poorly drawn, bad anatomy, mutated, extra limbs, ugly, out of frame, bad composition, low resolution, grainy, pixelated, noisy, oversaturated, undersaturated, (worst quality, low quality:1.3), (bad hands, missing fingers:1.2)"
)
negative_prompt_3 = gr.Text(
label="Negative prompt 3",
max_lines=1,
placeholder="Enter a third negative prompt",
visible=True,
value="(worst quality, low quality:1.3), (bad anatomy, bad hands, missing fingers, extra digit, fewer digits:1.2), (blurry:1.1), cropped, watermark, text, signature, logo, jpeg artifacts, (ugly, deformed, disfigured:1.2), (poorly drawn:1.2), mutated, extra limbs, (bad proportions, gross proportions:1.2), (malformed limbs, missing arms, missing legs, extra arms, extra legs:1.2), (fused fingers, too many fingers, long neck:1.2), (unnatural body, unnatural pose:1.1), out of frame, (bad composition, poorly composed:1.1), (oversaturated, undersaturated:1.1), (grainy, pixelated:1.1), (low resolution, noisy:1.1), (unrealistic, distorted:1.1), (extra fingers, mutated hands, poorly drawn hands, bad hands:1.3), (missing fingers:1.3)"
)
num_iterations = gr.Number(
value=1000,
label="Number of Iterations")
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=30.0,
step=0.1,
value=4.2,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=500,
step=1,
value=50,
)
gr.on(
triggers=[run_button_30.click, prompt.submit],
fn=infer_30,
inputs=[
prompt,
negative_prompt_1,
negative_prompt_2,
negative_prompt_3,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, expanded_prompt_output],
)
gr.on(
triggers=[run_button_60.click, prompt.submit],
fn=infer_60,
inputs=[
prompt,
negative_prompt_1,
negative_prompt_2,
negative_prompt_3,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, expanded_prompt_output],
)
gr.on(
triggers=[run_button_90.click, prompt.submit],
fn=infer_90,
inputs=[
prompt,
negative_prompt_1,
negative_prompt_2,
negative_prompt_3,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, expanded_prompt_output],
)
gr.on(
triggers=[run_button_100.click, prompt.submit],
fn=infer_100,
inputs=[
prompt,
negative_prompt_1,
negative_prompt_2,
negative_prompt_3,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, expanded_prompt_output],
)
if __name__ == "__main__":
demo.launch() |