File size: 14,682 Bytes
89f9a8d
 
2f637fc
72f9629
 
89f9a8d
39315d2
89f9a8d
c0e52ad
 
 
89f9a8d
 
 
 
 
 
 
afba6b8
d5d696e
fc729c7
 
d5d696e
fc729c7
 
bc3d031
372f84d
bc3d031
 
afba6b8
501c3b1
afba6b8
bc3d031
 
 
 
 
 
 
 
 
 
 
 
 
40cf9b4
63ce71b
7f14dcf
63ce71b
 
 
 
 
 
ef4a36f
40cf9b4
ef4a36f
 
 
65c318c
 
 
 
 
 
 
 
 
 
ef4a36f
 
 
65c318c
 
 
 
 
499faaf
65c318c
 
 
 
 
 
 
 
 
 
 
 
 
499faaf
65c318c
51218b3
499faaf
51218b3
499faaf
51218b3
 
 
40cf9b4
ef4a36f
 
65c318c
 
 
 
 
ef4a36f
65c318c
499faaf
 
65c318c
 
ef4a36f
 
 
65c318c
 
 
499faaf
 
 
65c318c
499faaf
65c318c
 
 
 
 
 
499faaf
65c318c
 
 
 
 
499faaf
65c318c
 
 
 
 
 
499faaf
65c318c
 
499faaf
 
51218b3
499faaf
51218b3
 
 
2abf58c
499faaf
 
 
 
63ce71b
 
9e6028d
63ce71b
 
 
9e6028d
94a9538
9e6028d
 
 
65c318c
94a9538
499faaf
 
9e6028d
94a9538
499faaf
51218b3
94a9538
499faaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c1ebe4
 
499faaf
63ce71b
 
 
 
 
 
 
 
 
9e6028d
63ce71b
483853f
94a9538
 
51218b3
94a9538
483853f
94a9538
 
7f14dcf
f398b03
63ce71b
 
2f637fc
 
 
 
 
8d25d5d
 
 
 
 
 
 
 
 
 
 
 
39315d2
8d25d5d
2f637fc
7f14dcf
40cf9b4
 
 
7f14dcf
 
 
 
 
 
 
fc729c7
7f14dcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc3d031
63ce71b
 
 
 
 
 
 
 
 
 
 
 
 
bc3d031
40cf9b4
63ce71b
2f637fc
63ce71b
 
 
bc3d031
 
5b730e0
 
 
bc3d031
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import os
import sys
import torch
import numpy as np 
import pandas as pd
import streamlit as st
import esm

from rdkit import Chem
from rdkit.Chem import Draw

sys.path.insert(0, os.path.abspath("src/"))

st.set_page_config(layout="wide")

basepath = os.path.dirname(__file__)
datapath = os.path.join(basepath, "data")

st.title('HyperDTI: Task-conditioned modeling of drug-target interactions.\n')
st.markdown('')
st.markdown(
    """
    🧬 Github: [ml-jku/hyper-dti](https://https://github.com/ml-jku/hyper-dti)    📝 NeurIPS 2022 AI4Science workshop paper: [OpenReview](https://openreview.net/forum?id=dIX34JWnIAL)\n
    """
)


def about_page():
    st.markdown(
        """      
        ### About
        
        HyperNetworks have been established as an effective technique to achieve fast adaptation of parameters for 
        neural networks. Recently, HyperNetwork predictions conditioned on descriptors of tasks have improved 
        multi-task generalization in various domains, such as personalized federated learning and neural architecture 
        search. Especially powerful results were achieved in few- and zero-shot settings, attributed to the increased 
        information sharing by the HyperNetwork. With the rise of new diseases fast discovery of drugs is needed which 
        requires models that are able to generalize drug-target interaction predictions in low-data scenarios. 
        
        In this work, we propose the HyperPCM model, a task-conditioned HyperNetwork approach for the problem of 
        predicting drug-target interactions in drug discovery. Our model learns to generate a QSAR model specialized on
        a given protein target. We demonstrate state-of-the-art performance over previous methods on multiple 
        well-known benchmarks, particularly in zero-shot settings for unseen protein targets.
        """
    )

    st.image('hyper-dti.png')


def predict_dti():
    st.markdown('## Predict drug-target interaction')

    st.write('In the future this page will display the predicted interaction betweek the given drug compounds and protein target by the HyperPCM mdoel.')
    
    col1, col2 = st.columns(2)
    
    with col1:
        st.markdown('### Drug')
        
        mol_col1, mol_col2 = st.columns(2)

        with mol_col1:
            smiles = st.text_input('Enter the SMILES of the query drug compound', value='CC(=O)OC1=CC=CC=C1C(=O)O', placeholder='CC(=O)OC1=CC=CC=C1C(=O)O')
            if smiles:
                mol = Chem.MolFromSmiles(smiles)
                mol_img = Chem.Draw.MolToImage(mol)
                st.image(mol_img) #, width = 140)

        with mol_col2:
            selected_encoder = st.selectbox(
                'Select encoder for drug compound',('None', 'CDDD', 'MolBERT')
            )
            if smiles: 
                if selected_encoder == 'CDDD':
                    from cddd.inference import InferenceModel
                    CDDD_MODEL_DIR = 'src/encoders/cddd'
                    cddd_model = InferenceModel(CDDD_MODEL_DIR)
                    drug_embedding = cddd_model.seq_to_emb([smiles])
                    #from huggingface_hub import hf_hub_download
                    #precomputed_embs = f'{selected_encoder}_encoding.csv'
                    #REPO_ID = "emmas96/Lenselink"
                    #embs_path = hf_hub_download(REPO_ID, precomputed_embs)
                    #embs = pd.read_csv(embs_path)
                    #embedding = embs[smiles]
                elif selected_encoder == 'MolBERT':
                    from molbert.utils.featurizer.molbert_featurizer import MolBertFeaturizer
                    from huggingface_hub import hf_hub_download
                    CDDD_MODEL_DIR = 'encoders/molbert/last.ckpt'
                    REPO_ID = "emmas96/hyperpcm"
                    checkpoint_path = hf_hub_download(REPO_ID, MOLBERT_MODEL_DIR)
                    molbert_model = MolBertFeaturizer(checkpoint_path, max_seq_len=500, embedding_type='average-1-cat-pooled')
                    drug_embedding = molbert_model.transform([smiles])
                else: 
                    #st.write('No pre-trained version of HyperPCM is available for the chosen encoder.')
                    drug_embedding = None
                    st.image('molecule_encoder.png')
                if drug_embedding is not None:
                    #st.write(f'{selected_encoder} embedding')
                    #st.write(embedding)
                    st.image('molecule_encoder_done.png')

    with col2:
        st.markdown('### Target')

        prot_col1, prot_col2 = st.columns(2)

        with prot_col1:
            sequence = st.text_input('Enter the amino-acid sequence of the query protein target', value='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA', placeholder='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA')
        
            if sequence:
                #st.markdown('\n\n\n\n Plot of protein to be added soon. \n\n\n\n')
                st.error('Visualization of protein to be added soon.')

        with prot_col2:
            selected_encoder = st.selectbox(
                'Select encoder for protein target',('None', 'SeqVec', 'UniRep', 'ESM-1b', 'ProtT5')
            )
            if sequence: 
                if selected_encoder == 'SeqVec':
                    from bio_embeddings.embed import SeqVecEmbedder
                        encoder = SeqVecEmbedder()
                    with st.spinner('Currently encoding the query protein target with SeqVec...'):
                        embeddings = encoder.embed_batch([sequence])
                    for emb in embeddings:
                        prot_embedding = encoder.reduce_per_protein(emb)
                        break
                elif selected_encoder == 'UniRep':
                    from jax_unirep.utils import load_params
                    params = load_params() 
                    from jax_unirep.featurize import get_reps                               
                    embedding, h_final, c_final = get_reps([sequence])
                    prot_embedding = embedding.mean(axis=0)
                elif selected_encoder == 'ESM-1b':
                    from bio_embeddings.embed import ESM1bEmbedder
                    encoder = ESM1bEmbedder()
                    embeddings = encoder.embed_batch([sequence])
                    for emb in embeddings:
                        prot_embedding = encoder.reduce_per_protein(emb)
                        break
                elif selected_encoder == 'ProtT5':
                    from bio_embeddings.embed import ProtTransT5XLU50Embedder
                    encoder = ProtTransT5XLU50Embedder()
                    embeddings = encoder.embed_batch([sequence])
                    for emb in embeddings:
                        prot_embedding = encoder.reduce_per_protein(emb)
                        break
                else: 
                    st.warning('Chosen encoder above.')
                    prot_embedding = None
                    st.image('protein_encoder.png')
                if prot_embedding is not None:
                    #st.write(f'{selected_encoder} embedding')
                    #st.write(embedding)
                    st.image('protein_encoder_done.png')

    if not drug_embedding or not prot_embedding:
        st.error('Witing for computed drug and target embeddings...')
    else:
        st.warning('In the future inference will be run with HyperPCM on the given drug compound and protein target...')
    

def retrieval():
    st.markdown('## Retrieve top-k')

    st.write('In the furute this page will retrieve the top-k drug compounds that are predicted to have the highest activity toward the given protein target from either the Lenselink or Davis datasets.')

    st.markdown('### Choose protein target')
    sequence = st.text_input('Enter the amino-acid sequence of the query protein target', value='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA', placeholder='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA')
    
    if sequence:
        col1, col2 = st.columns(2)
        with col1:
            #st.markdown('\n\n\n\n Plot of protein to be added soon. \n\n\n\n')
            st.error('Visualization of protein to be added soon.')
        
        with col2:
            #st.write('Currently encoding the protein with SecVec...')
            st.image('protein_encoder_done.png')
            
            from bio_embeddings.embed import SeqVecEmbedder
            encoder = SeqVecEmbedder()
            with st.spinner('Currently encoding the query protein target with SeqVec...'):
                embeddings = encoder.embed_batch([sequence])
            for emb in embeddings:
                embedding = encoder.reduce_per_protein(emb)
                break
            st.success('Encoding complete.')

    st.markdown('### Inference')
    
    import time
    progress_text = "HyperPCM predicts the QSAR model for the query protein target. Please wait."
    my_bar = st.progress(0, text=progress_text)
    for i in range(100):
        time.sleep(0.1)
        my_bar.progress(i + 1, text=progress_text)
        
    st.markdown('### Retrieval')
    
    col1, col2 = st.columns(2)
    with col1:
        selected_dataset = st.selectbox(
                'Select dataset from which the drug compounds should be retrieved',('Lenselink', 'Davis')
            )
    with col2:
        selected_k = st.selectbox(
                'Select the top-k number of drug compounds to retrieve',(5, 10, 15, 20)
            )
    
    st.write(f'The top-{selected_k} most active drug coupounds from {selected_dataset} predicted by HyperPCM are: ')
    dummy_smiles = ['CC(=O)OC1=CC=CC=C1C(=O)O', 'COc1cc(C=O)ccc1O', 'CC(=O)Nc1ccc(O)cc1', 'CC(=O)Nc1ccc(OS(=O)(=O)O)cc1', 'CC(=O)Nc1ccc(O[C@@H]2O[C@H](C(=O)O)[C@@H](O)[C@H](O)[C@H]2O)cc1']
    cols = st.columns(5)
    for j, col in enumerate(cols):
        with col:
            for i in range(int(selected_k/5)):
                mol = Chem.MolFromSmiles(dummy_smiles[j])
                mol_img = Chem.Draw.MolToImage(mol)
                st.image(mol_img) 

def display_protein():
    st.markdown('## Display protein')
    st.write('In the future this page will display the ESM predicted sequence of a protein target.')

    st.markdown('### Target')
    sequence = st.text_input('Enter the amino-acid sequence of the query protein target', value='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA', placeholder='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA')
    
    if sequence:
        model = esm.pretrained.esmfold_v1()
        model = model.eval().cuda()
        
        with torch.no_grad():
            output = model.infer_pdb(sequence)
        
        #with open("result.pdb", "w") as f:
        #    f.write(output)
        
        
        #struct = bsio.load_structure("result.pdb", extra_fields=["b_factor"])
        #print(struct.b_factor.mean())
        
        st.write(output)
    
    """
    sequence = st.text_input("Enter the amino-acid sequence of the query protein target", value="HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA", placeholder="HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA")
    
    if sequence:
        def esm_search(model, sequnce, batch_converter,top_k=5):
        batch_labels, batch_strs, batch_tokens = batch_converter([("protein1", sequnce),])
        
        # Extract per-residue representations (on CPU)
        with torch.no_grad():
            results = model(batch_tokens, repr_layers=[12], return_contacts=True)
        token_representations = results["representations"][12]
    
        token_list = token_representations.tolist()[0][0][0]
        
        client = Client(
            url=st.secrets["DB_URL"], user=st.secrets["USER"], password=st.secrets["PASSWD"])
        
        result = client.fetch("SELECT seq, distance('topK=500')(representations, " + str(token_list) + ')'+ "as dist FROM default.esm_protein_indexer_768")
        
        result_temp_seq = []
        
        for i in result:
            # result_temp_coords = i['seq']
            result_temp_seq.append(i['seq'])
        
        result_temp_seq = list(set(result_temp_seq))
    
        result_temp_seq = esm_search(model, sequence, esm_search,top_k=5)
        st.text('search result: ')
        # tab1, tab2, tab3, tab4, = st.tabs(["Cat", "Dog", "Owl"])
        if st.button(result_temp_seq[0]):
            print(result_temp_seq[0])
        elif st.button(result_temp_seq[1]):
            print(result_temp_seq[1])
        elif st.button(result_temp_seq[2]):
            print(result_temp_seq[2])
        elif st.button(result_temp_seq[3]):
            print(result_temp_seq[3])
        elif st.button(result_temp_seq[4]):
            print(result_temp_seq[4])
    
        start[2] = st.pyplot(visualize_3D_Coordinates(result_temp_coords).figure)
        def show_protein_structure(sequence):
    headers = {
        'Content-Type': 'application/x-www-form-urlencoded',
        }
    response = requests.post('https://api.esmatlas.com/foldSequence/v1/pdb/', headers=headers, data=sequence)
    name = sequence[:3] + sequence[-3:]
    pdb_string = response.content.decode('utf-8')
    with open('predicted.pdb', 'w') as f:
        f.write(pdb_string)
    struct = bsio.load_structure('predicted.pdb', extra_fields=["b_factor"])
    b_value = round(struct.b_factor.mean(), 4)
    render_mol(pdb_string)
        if residues_marker:
            start[3] = showmol(render_pdb_resn(viewer = render_pdb(id = id_PDB),resn_lst = [residues_marker]))
        else:
            start[3] = showmol(render_pdb(id = id_PDB))
        st.session_state['xq'] = st.session_state.model
    
    # example proteins ["HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA"], ["AHKLFIGGLPNYLNDDQVKELLTSFGPLKAFNLVKDSATGLSKGYAFCEYVDINVTDQAIAGLNGMQLGDKKLLVQRASVGAKNA"]
    """

def display_context():
    st.markdown('## Display context')
    st.write('In the future this page will visualize the context module for a given protein, i.e., show important features and highly ranked / related proteins from the context.')

def references():
    st.markdown(
        '''
        ## References

        This page will contain all references to related work.
        '''
    )

page_names_to_func = {
    'About': about_page,
    'Predict DTI': predict_dti,
    'Retrieve Top-k': retrieval,
    'Display Protein': display_protein,
    'Display Context': display_context,
    'References': references
}

selected_page = st.sidebar.selectbox('Choose function', page_names_to_func.keys())
st.sidebar.markdown('')
page_names_to_func[selected_page]()