update interface to choose target in retrieval
Browse files
app.py
CHANGED
|
@@ -144,28 +144,28 @@ def retrieval():
|
|
| 144 |
|
| 145 |
st.write('In the furute this page will retrieve the top-k drug compounds that are predicted to have the highest activity toward the given protein target from either the Lenselink or Davis datasets.')
|
| 146 |
|
| 147 |
-
st.markdown('###
|
| 148 |
sequence = st.text_input('Enter the amino-acid sequence of the query protein target', value='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA', placeholder='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA')
|
| 149 |
|
| 150 |
if sequence:
|
| 151 |
-
|
|
|
|
|
|
|
| 152 |
|
| 153 |
-
|
| 154 |
-
'
|
| 155 |
-
|
| 156 |
-
|
| 157 |
from bio_embeddings.embed import SeqVecEmbedder
|
| 158 |
encoder = SeqVecEmbedder()
|
| 159 |
embeddings = encoder.embed_batch([sequence])
|
| 160 |
for emb in embeddings:
|
| 161 |
embedding = encoder.reduce_per_protein(emb)
|
| 162 |
break
|
| 163 |
-
|
| 164 |
-
st.write('
|
| 165 |
-
embedding = None
|
| 166 |
-
if embedding is not None:
|
| 167 |
-
st.write(f'{selected_encoder} embedding')
|
| 168 |
st.write(embedding)
|
|
|
|
| 169 |
|
| 170 |
st.markdown('### Retrieval')
|
| 171 |
st.write('TODO HyperPCM predicts the QSAR model for the given protein target.')
|
|
@@ -181,37 +181,19 @@ def retrieval():
|
|
| 181 |
)
|
| 182 |
|
| 183 |
st.write(f'The top-{selected_k} most active drug coupounds from {selected_dataset} predicted by HyperPCM are: ')
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
with col3:
|
| 198 |
-
smiles = 'CC(=O)Nc1ccc(O)cc1'
|
| 199 |
-
mol = Chem.MolFromSmiles(smiles)
|
| 200 |
-
mol_img = Chem.Draw.MolToImage(mol)
|
| 201 |
-
st.image(mol_img)
|
| 202 |
-
|
| 203 |
-
with col4:
|
| 204 |
-
smiles = 'CC(=O)Nc1ccc(OS(=O)(=O)O)cc1'
|
| 205 |
-
mol = Chem.MolFromSmiles(smiles)
|
| 206 |
-
mol_img = Chem.Draw.MolToImage(mol)
|
| 207 |
-
st.image(mol_img)
|
| 208 |
-
|
| 209 |
-
with col5:
|
| 210 |
-
smiles = 'CC(=O)Nc1ccc(O[C@@H]2O[C@H](C(=O)O)[C@@H](O)[C@H](O)[C@H]2O)cc1'
|
| 211 |
-
mol = Chem.MolFromSmiles(smiles)
|
| 212 |
-
mol_img = Chem.Draw.MolToImage(mol)
|
| 213 |
-
st.image(mol_img)
|
| 214 |
-
|
| 215 |
|
| 216 |
def display_protein():
|
| 217 |
st.markdown('## Display protein')
|
|
|
|
| 144 |
|
| 145 |
st.write('In the furute this page will retrieve the top-k drug compounds that are predicted to have the highest activity toward the given protein target from either the Lenselink or Davis datasets.')
|
| 146 |
|
| 147 |
+
st.markdown('### Choose protein target')
|
| 148 |
sequence = st.text_input('Enter the amino-acid sequence of the query protein target', value='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA', placeholder='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA')
|
| 149 |
|
| 150 |
if sequence:
|
| 151 |
+
col1, col2, col3 = st.columns(3)
|
| 152 |
+
with col1:
|
| 153 |
+
st.markdown('\n\n\n\n Plot of protein to be added soon. \n\n\n\n')
|
| 154 |
|
| 155 |
+
with col2:
|
| 156 |
+
st.write('Encoding with SecVec')
|
| 157 |
+
st.image('protein_encoder.png')
|
| 158 |
+
|
| 159 |
from bio_embeddings.embed import SeqVecEmbedder
|
| 160 |
encoder = SeqVecEmbedder()
|
| 161 |
embeddings = encoder.embed_batch([sequence])
|
| 162 |
for emb in embeddings:
|
| 163 |
embedding = encoder.reduce_per_protein(emb)
|
| 164 |
break
|
| 165 |
+
with col3:
|
| 166 |
+
st.write(f'SeqVec embedding')
|
|
|
|
|
|
|
|
|
|
| 167 |
st.write(embedding)
|
| 168 |
+
st.write(np.transpose(embedding))
|
| 169 |
|
| 170 |
st.markdown('### Retrieval')
|
| 171 |
st.write('TODO HyperPCM predicts the QSAR model for the given protein target.')
|
|
|
|
| 181 |
)
|
| 182 |
|
| 183 |
st.write(f'The top-{selected_k} most active drug coupounds from {selected_dataset} predicted by HyperPCM are: ')
|
| 184 |
+
dummy_smiles = [['CC(=O)OC1=CC=CC=C1C(=O)O', 'COc1cc(C=O)ccc1O', 'CC(=O)Nc1ccc(O)cc1', 'CC(=O)Nc1ccc(OS(=O)(=O)O)cc1',
|
| 185 |
+
'CC(=O)Nc1ccc(O[C@@H]2O[C@H](C(=O)O)[C@@H](O)[C@H](O)[C@H]2O)cc1'], ['CC(=O)OC1=CC=CC=C1C(=O)O', 'COc1cc(C=O)ccc1O', 'CC(=O)Nc1ccc(O)cc1',
|
| 186 |
+
'CC(=O)Nc1ccc(OS(=O)(=O)O)cc1', 'CC(=O)Nc1ccc(O[C@@H]2O[C@H](C(=O)O)[C@@H](O)[C@H](O)[C@H]2O)cc1'], ['CC(=O)OC1=CC=CC=C1C(=O)O',
|
| 187 |
+
'COc1cc(C=O)ccc1O', 'CC(=O)Nc1ccc(O)cc1', 'CC(=O)Nc1ccc(OS(=O)(=O)O)cc1', 'CC(=O)Nc1ccc(O[C@@H]2O[C@H](C(=O)O)[C@@H](O)[C@H](O)[C@H]2O)cc1'],
|
| 188 |
+
['CC(=O)OC1=CC=CC=C1C(=O)O', 'COc1cc(C=O)ccc1O', 'CC(=O)Nc1ccc(O)cc1', 'CC(=O)Nc1ccc(OS(=O)(=O)O)cc1',
|
| 189 |
+
'CC(=O)Nc1ccc(O[C@@H]2O[C@H](C(=O)O)[C@@H](O)[C@H](O)[C@H]2O)cc1']]
|
| 190 |
+
cols = st.columns(5)
|
| 191 |
+
for j, col in enumerate(cols):
|
| 192 |
+
with cols:
|
| 193 |
+
for i in range(int(selected_k/5)):
|
| 194 |
+
mol = Chem.MolFromSmiles(dummy_smiles[i,j])
|
| 195 |
+
mol_img = Chem.Draw.MolToImage(mol)
|
| 196 |
+
st.image(mol_img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
def display_protein():
|
| 199 |
st.markdown('## Display protein')
|