omit protein display temporarily
Browse files
app.py
CHANGED
@@ -43,6 +43,7 @@ def about_page():
|
|
43 |
#st.image('hyper-dti.png') todo
|
44 |
)
|
45 |
|
|
|
46 |
def display_dti():
|
47 |
st.markdown('##')
|
48 |
smiles = st.text_input("Enter the SMILES of the query drug compound", value="CC(=O)OC1=CC=CC=C1C(=O)O", placeholder="CC(=O)OC1=CC=CC=C1C(=O)O")
|
@@ -59,12 +60,70 @@ def display_dti():
|
|
59 |
st.write("")
|
60 |
st.markdown('##')
|
61 |
|
|
|
|
|
|
|
62 |
sequence = st.text_input("Enter the amino-acid sequence of the query protein target", value="HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA", placeholder="HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA")
|
63 |
|
64 |
if sequence:
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
page_names_to_func = {
|
70 |
'About': about_page,
|
|
|
43 |
#st.image('hyper-dti.png') todo
|
44 |
)
|
45 |
|
46 |
+
|
47 |
def display_dti():
|
48 |
st.markdown('##')
|
49 |
smiles = st.text_input("Enter the SMILES of the query drug compound", value="CC(=O)OC1=CC=CC=C1C(=O)O", placeholder="CC(=O)OC1=CC=CC=C1C(=O)O")
|
|
|
60 |
st.write("")
|
61 |
st.markdown('##')
|
62 |
|
63 |
+
|
64 |
+
def display_protein():
|
65 |
+
"""
|
66 |
sequence = st.text_input("Enter the amino-acid sequence of the query protein target", value="HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA", placeholder="HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA")
|
67 |
|
68 |
if sequence:
|
69 |
+
def esm_search(model, sequnce, batch_converter,top_k=5):
|
70 |
+
batch_labels, batch_strs, batch_tokens = batch_converter([("protein1", sequnce),])
|
71 |
+
|
72 |
+
# Extract per-residue representations (on CPU)
|
73 |
+
with torch.no_grad():
|
74 |
+
results = model(batch_tokens, repr_layers=[12], return_contacts=True)
|
75 |
+
token_representations = results["representations"][12]
|
76 |
|
77 |
+
token_list = token_representations.tolist()[0][0][0]
|
78 |
+
|
79 |
+
client = Client(
|
80 |
+
url=st.secrets["DB_URL"], user=st.secrets["USER"], password=st.secrets["PASSWD"])
|
81 |
+
|
82 |
+
result = client.fetch("SELECT seq, distance('topK=500')(representations, " + str(token_list) + ')'+ "as dist FROM default.esm_protein_indexer_768")
|
83 |
+
|
84 |
+
result_temp_seq = []
|
85 |
+
|
86 |
+
for i in result:
|
87 |
+
# result_temp_coords = i['seq']
|
88 |
+
result_temp_seq.append(i['seq'])
|
89 |
+
|
90 |
+
result_temp_seq = list(set(result_temp_seq))
|
91 |
+
|
92 |
+
result_temp_seq = esm_search(model, sequence, esm_search,top_k=5)
|
93 |
+
st.text('search result: ')
|
94 |
+
# tab1, tab2, tab3, tab4, = st.tabs(["Cat", "Dog", "Owl"])
|
95 |
+
if st.button(result_temp_seq[0]):
|
96 |
+
print(result_temp_seq[0])
|
97 |
+
elif st.button(result_temp_seq[1]):
|
98 |
+
print(result_temp_seq[1])
|
99 |
+
elif st.button(result_temp_seq[2]):
|
100 |
+
print(result_temp_seq[2])
|
101 |
+
elif st.button(result_temp_seq[3]):
|
102 |
+
print(result_temp_seq[3])
|
103 |
+
elif st.button(result_temp_seq[4]):
|
104 |
+
print(result_temp_seq[4])
|
105 |
+
|
106 |
+
start[2] = st.pyplot(visualize_3D_Coordinates(result_temp_coords).figure)
|
107 |
+
def show_protein_structure(sequence):
|
108 |
+
headers = {
|
109 |
+
'Content-Type': 'application/x-www-form-urlencoded',
|
110 |
+
}
|
111 |
+
response = requests.post('https://api.esmatlas.com/foldSequence/v1/pdb/', headers=headers, data=sequence)
|
112 |
+
name = sequence[:3] + sequence[-3:]
|
113 |
+
pdb_string = response.content.decode('utf-8')
|
114 |
+
with open('predicted.pdb', 'w') as f:
|
115 |
+
f.write(pdb_string)
|
116 |
+
struct = bsio.load_structure('predicted.pdb', extra_fields=["b_factor"])
|
117 |
+
b_value = round(struct.b_factor.mean(), 4)
|
118 |
+
render_mol(pdb_string)
|
119 |
+
if residues_marker:
|
120 |
+
start[3] = showmol(render_pdb_resn(viewer = render_pdb(id = id_PDB),resn_lst = [residues_marker]))
|
121 |
+
else:
|
122 |
+
start[3] = showmol(render_pdb(id = id_PDB))
|
123 |
+
st.session_state['xq'] = st.session_state.model
|
124 |
+
|
125 |
+
# example proteins ["HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA"], ["AHKLFIGGLPNYLNDDQVKELLTSFGPLKAFNLVKDSATGLSKGYAFCEYVDINVTDQAIAGLNGMQLGDKKLLVQRASVGAKNA"]
|
126 |
+
"""
|
127 |
|
128 |
page_names_to_func = {
|
129 |
'About': about_page,
|