emmas96 commited on
Commit
63ce71b
·
1 Parent(s): 9cefb25

update comments for planned future functionalities

Browse files
Files changed (1) hide show
  1. app.py +52 -15
app.py CHANGED
@@ -42,12 +42,16 @@ def about_page():
42
  a given protein target. We demonstrate state-of-the-art performance over previous methods on multiple
43
  well-known benchmarks, particularly in zero-shot settings for unseen protein targets.
44
  """
45
- #st.image('hyper-dti.png') todo
46
  )
47
 
 
48
 
49
- def display_dti():
50
- st.markdown('##')
 
 
 
 
51
  col1, col2 = st.columns(2)
52
 
53
  with col1:
@@ -105,12 +109,6 @@ def display_dti():
105
  for emb in embeddings:
106
  embedding = encoder.reduce_per_protein(emb)
107
  break
108
- #from huggingface_hub import hf_hub_download
109
- #precomputed_embs = f'{selected_encoder}_encoding.csv'
110
- #REPO_ID = "emmas96/Lenselink"
111
- #embs_path = hf_hub_download(REPO_ID, precomputed_embs)
112
- #embs = pd.read_csv(embs_path)
113
- #embedding = embs[sequence]
114
  elif selected_encoder == 'UniRep':
115
  from jax_unirep.utils import load_params
116
  params = load_params()
@@ -138,8 +136,13 @@ def display_dti():
138
  st.write(f'{selected_encoder} embedding')
139
  st.write(embedding)
140
 
 
 
 
141
  def retrieval():
142
- st.markdown('##')
 
 
143
 
144
  st.markdown('### Target')
145
  sequence = st.text_input('Enter the amino-acid sequence of the query protein target', value='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA', placeholder='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA')
@@ -148,10 +151,28 @@ def retrieval():
148
  st.markdown('\n\n\n\n Plot of protein to be added soon. \n\n\n\n')
149
 
150
  selected_encoder = st.selectbox(
151
- 'Select encoder for protein target',('None', 'SeqVec', 'UniRep', 'ESM-1b', 'ProtT5')
152
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
 
154
- st.markdown('### Retrieval of top-5 drug coupound from ChEMBL:')
155
  col1, col2, col3, col4, col5 = st.columns(5)
156
  with col1:
157
  smiles = 'CC(=O)OC1=CC=CC=C1C(=O)O'
@@ -185,7 +206,8 @@ def retrieval():
185
 
186
 
187
  def display_protein():
188
- st.markdown('##')
 
189
 
190
  st.markdown('### Target')
191
  sequence = st.text_input('Enter the amino-acid sequence of the query protein target', value='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA', placeholder='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA')
@@ -269,11 +291,26 @@ def display_protein():
269
  # example proteins ["HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA"], ["AHKLFIGGLPNYLNDDQVKELLTSFGPLKAFNLVKDSATGLSKGYAFCEYVDINVTDQAIAGLNGMQLGDKKLLVQRASVGAKNA"]
270
  """
271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
272
  page_names_to_func = {
273
  'About': about_page,
274
- 'Display DTI': display_dti,
275
  'Retrieve Top-k': retrieval,
276
- 'Diplay Protein': display_protein
 
 
277
  }
278
 
279
  selected_page = st.sidebar.selectbox('Choose function', page_names_to_func.keys())
 
42
  a given protein target. We demonstrate state-of-the-art performance over previous methods on multiple
43
  well-known benchmarks, particularly in zero-shot settings for unseen protein targets.
44
  """
 
45
  )
46
 
47
+ st.image('hyper-dti.png')
48
 
49
+
50
+ def predict_dti():
51
+ st.markdown('## Predict drug-target interaction')
52
+
53
+ st.write('In the future this page will display the predicted interaction betweek the given drug compounds and protein target by the HyperPCM mdoel.')
54
+
55
  col1, col2 = st.columns(2)
56
 
57
  with col1:
 
109
  for emb in embeddings:
110
  embedding = encoder.reduce_per_protein(emb)
111
  break
 
 
 
 
 
 
112
  elif selected_encoder == 'UniRep':
113
  from jax_unirep.utils import load_params
114
  params = load_params()
 
136
  st.write(f'{selected_encoder} embedding')
137
  st.write(embedding)
138
 
139
+ st.write('TODO run inference with HyperPCM on the given drug compound and protein target.')
140
+
141
+
142
  def retrieval():
143
+ st.markdown('## Retrieve top-k')
144
+
145
+ st.write('In the furute this page will retrieve the top-k drug compounds that are predicted to have the highest activity toward the given protein target from either the Lenselink or Davis datasets.')
146
 
147
  st.markdown('### Target')
148
  sequence = st.text_input('Enter the amino-acid sequence of the query protein target', value='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA', placeholder='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA')
 
151
  st.markdown('\n\n\n\n Plot of protein to be added soon. \n\n\n\n')
152
 
153
  selected_encoder = st.selectbox(
154
+ 'Select encoder for protein target',('SeqVec')
155
  )
156
+ from bio_embeddings.embed import SeqVecEmbedder
157
+ encoder = SeqVecEmbedder()
158
+ embeddings = encoder.embed_batch([sequence])
159
+ for emb in embeddings:
160
+ embedding = encoder.reduce_per_protein(emb)
161
+ break
162
+
163
+ st.write('TODO HyperPCM predicts the QSAR model for the given protein target.')
164
+
165
+ col1, col2 = st.columns(2)
166
+ with col1:
167
+ selected_dataset = st.selectbox(
168
+ 'Select dataset from which the drug compounds should be retrieved',('Lenselink', 'Davis')
169
+ )
170
+ with col2:
171
+ selected_k = st.selectbox(
172
+ 'Select the top-k number of drug compounds to retrieve',(5, 10, 15, 20)
173
+ )
174
 
175
+ st.write(f'The top-{selected_k} most active drug coupounds from {selected_dataset} predicted by HyperPCM are: ')
176
  col1, col2, col3, col4, col5 = st.columns(5)
177
  with col1:
178
  smiles = 'CC(=O)OC1=CC=CC=C1C(=O)O'
 
206
 
207
 
208
  def display_protein():
209
+ st.markdown('## Display protein')
210
+ st.write('In the future this page will display the ESM predicted sequence of a protein target.')
211
 
212
  st.markdown('### Target')
213
  sequence = st.text_input('Enter the amino-acid sequence of the query protein target', value='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA', placeholder='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA')
 
291
  # example proteins ["HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA"], ["AHKLFIGGLPNYLNDDQVKELLTSFGPLKAFNLVKDSATGLSKGYAFCEYVDINVTDQAIAGLNGMQLGDKKLLVQRASVGAKNA"]
292
  """
293
 
294
+ def display_context():
295
+ st.markdown('## Display context')
296
+ st.write('In the future this page will visualize the context module for a given protein, i.e., show important features and highly ranked / related proteins from the context.')
297
+
298
+ def references():
299
+ st.markdown(
300
+ '''
301
+ ## References
302
+
303
+ This page will contain all references to related work.
304
+ '''
305
+ )
306
+
307
  page_names_to_func = {
308
  'About': about_page,
309
+ 'Predict DTI': predict_dti,
310
  'Retrieve Top-k': retrieval,
311
+ 'Display Protein': display_protein,
312
+ 'Display Context': display_context,
313
+ 'References': references
314
  }
315
 
316
  selected_page = st.sidebar.selectbox('Choose function', page_names_to_func.keys())