emmas96 commited on
Commit
501c3b1
Β·
1 Parent(s): 372f84d

update page header

Browse files
Files changed (1) hide show
  1. app.py +3 -5
app.py CHANGED
@@ -12,8 +12,8 @@ datapath = os.path.join(basepath, "data")
12
  st.title('HyperDTI: Task-conditioned modeling of drug-target interactions.\n')
13
  st.markdown(
14
  """
15
- 🧬 Generate a QSAR model for the protein target of interest, useful for high-throughput screening or drug repurposing.\n
16
- πŸ’» Github: [ml-jku/hyper-dti](https://https://github.com/ml-jku/hyper-dti)
17
  πŸ“ NeurIPS 2022 AI4Science workshop paper: [OpenReview](https://openreview.net/forum?id=dIX34JWnIAL)\n
18
  """
19
  )
@@ -22,7 +22,7 @@ st.markdown(
22
  def about_page():
23
  st.markdown(
24
  """
25
- ## About
26
 
27
  HyperNetworks have been established as an effective technique to achieve fast adaptation of parameters for
28
  neural networks. Recently, HyperNetwork predictions conditioned on descriptors of tasks have improved
@@ -35,8 +35,6 @@ def about_page():
35
  predicting drug-target interactions in drug discovery. Our model learns to generate a QSAR model specialized on
36
  a given protein target. We demonstrate state-of-the-art performance over previous methods on multiple
37
  well-known benchmarks, particularly in zero-shot settings for unseen protein targets.
38
-
39
- ![Model overview](hyper-dti.png)
40
  """
41
  )
42
 
 
12
  st.title('HyperDTI: Task-conditioned modeling of drug-target interactions.\n')
13
  st.markdown(
14
  """
15
+ \n
16
+ 🧬 Github: [ml-jku/hyper-dti](https://https://github.com/ml-jku/hyper-dti)
17
  πŸ“ NeurIPS 2022 AI4Science workshop paper: [OpenReview](https://openreview.net/forum?id=dIX34JWnIAL)\n
18
  """
19
  )
 
22
  def about_page():
23
  st.markdown(
24
  """
25
+ ### About
26
 
27
  HyperNetworks have been established as an effective technique to achieve fast adaptation of parameters for
28
  neural networks. Recently, HyperNetwork predictions conditioned on descriptors of tasks have improved
 
35
  predicting drug-target interactions in drug discovery. Our model learns to generate a QSAR model specialized on
36
  a given protein target. We demonstrate state-of-the-art performance over previous methods on multiple
37
  well-known benchmarks, particularly in zero-shot settings for unseen protein targets.
 
 
38
  """
39
  )
40