bug in retrieval
Browse files
app.py
CHANGED
@@ -70,7 +70,6 @@ def predict_dti():
|
|
70 |
selected_encoder = st.selectbox(
|
71 |
'Select encoder for drug compound',('None', 'CDDD', 'MolBERT')
|
72 |
)
|
73 |
-
st.image('molecule_encoder.png')
|
74 |
if smiles:
|
75 |
if selected_encoder == 'CDDD':
|
76 |
from cddd.inference import InferenceModel
|
@@ -92,11 +91,13 @@ def predict_dti():
|
|
92 |
molbert_model = MolBertFeaturizer(checkpoint_path, max_seq_len=500, embedding_type='average-1-cat-pooled')
|
93 |
embedding = molbert_model.transform([smiles])
|
94 |
else:
|
95 |
-
st.write('No pre-trained version of HyperPCM is available for the chosen encoder.')
|
96 |
embedding = None
|
|
|
97 |
if embedding is not None:
|
98 |
-
st.write(f'{selected_encoder} embedding')
|
99 |
-
st.write(embedding)
|
|
|
100 |
|
101 |
with col2:
|
102 |
st.markdown('### Target')
|
@@ -113,7 +114,6 @@ def predict_dti():
|
|
113 |
selected_encoder = st.selectbox(
|
114 |
'Select encoder for protein target',('None', 'SeqVec', 'UniRep', 'ESM-1b', 'ProtT5')
|
115 |
)
|
116 |
-
st.image('protein_encoder.png')
|
117 |
if sequence:
|
118 |
if selected_encoder == 'SeqVec':
|
119 |
from bio_embeddings.embed import SeqVecEmbedder
|
@@ -143,11 +143,13 @@ def predict_dti():
|
|
143 |
embedding = encoder.reduce_per_protein(emb)
|
144 |
break
|
145 |
else:
|
146 |
-
st.write('No pre-trained version of HyperPCM is available for the chosen encoder.')
|
147 |
embedding = None
|
|
|
148 |
if embedding is not None:
|
149 |
-
st.write(f'{selected_encoder} embedding')
|
150 |
-
st.write(embedding)
|
|
|
151 |
|
152 |
st.write('TODO run inference with HyperPCM on the given drug compound and protein target.')
|
153 |
|
@@ -167,7 +169,7 @@ def retrieval():
|
|
167 |
|
168 |
with col2:
|
169 |
st.write('Encoding with SecVec')
|
170 |
-
st.image('
|
171 |
|
172 |
from bio_embeddings.embed import SeqVecEmbedder
|
173 |
encoder = SeqVecEmbedder()
|
@@ -175,9 +177,6 @@ def retrieval():
|
|
175 |
for emb in embeddings:
|
176 |
embedding = encoder.reduce_per_protein(emb)
|
177 |
break
|
178 |
-
st.write('SeqVec embedding')
|
179 |
-
st.write(embedding)
|
180 |
-
st.write(np.transpose(embedding))
|
181 |
|
182 |
st.markdown('### Retrieval')
|
183 |
st.write('TODO HyperPCM predicts the QSAR model for the given protein target.')
|
@@ -201,7 +200,7 @@ def retrieval():
|
|
201 |
'CC(=O)Nc1ccc(O[C@@H]2O[C@H](C(=O)O)[C@@H](O)[C@H](O)[C@H]2O)cc1']]
|
202 |
cols = st.columns(5)
|
203 |
for j, col in enumerate(cols):
|
204 |
-
with
|
205 |
for i in range(int(selected_k/5)):
|
206 |
mol = Chem.MolFromSmiles(dummy_smiles[i,j])
|
207 |
mol_img = Chem.Draw.MolToImage(mol)
|
|
|
70 |
selected_encoder = st.selectbox(
|
71 |
'Select encoder for drug compound',('None', 'CDDD', 'MolBERT')
|
72 |
)
|
|
|
73 |
if smiles:
|
74 |
if selected_encoder == 'CDDD':
|
75 |
from cddd.inference import InferenceModel
|
|
|
91 |
molbert_model = MolBertFeaturizer(checkpoint_path, max_seq_len=500, embedding_type='average-1-cat-pooled')
|
92 |
embedding = molbert_model.transform([smiles])
|
93 |
else:
|
94 |
+
#st.write('No pre-trained version of HyperPCM is available for the chosen encoder.')
|
95 |
embedding = None
|
96 |
+
st.image('molecule_encoder.png')
|
97 |
if embedding is not None:
|
98 |
+
#st.write(f'{selected_encoder} embedding')
|
99 |
+
#st.write(embedding)
|
100 |
+
st.image('molecule_encoder_done.png')
|
101 |
|
102 |
with col2:
|
103 |
st.markdown('### Target')
|
|
|
114 |
selected_encoder = st.selectbox(
|
115 |
'Select encoder for protein target',('None', 'SeqVec', 'UniRep', 'ESM-1b', 'ProtT5')
|
116 |
)
|
|
|
117 |
if sequence:
|
118 |
if selected_encoder == 'SeqVec':
|
119 |
from bio_embeddings.embed import SeqVecEmbedder
|
|
|
143 |
embedding = encoder.reduce_per_protein(emb)
|
144 |
break
|
145 |
else:
|
146 |
+
#st.write('No pre-trained version of HyperPCM is available for the chosen encoder.')
|
147 |
embedding = None
|
148 |
+
st.image('protein_encoder.png')
|
149 |
if embedding is not None:
|
150 |
+
#st.write(f'{selected_encoder} embedding')
|
151 |
+
#st.write(embedding)
|
152 |
+
st.image('protein_encoder_done.png')
|
153 |
|
154 |
st.write('TODO run inference with HyperPCM on the given drug compound and protein target.')
|
155 |
|
|
|
169 |
|
170 |
with col2:
|
171 |
st.write('Encoding with SecVec')
|
172 |
+
st.image('protein_encoder_done.png')
|
173 |
|
174 |
from bio_embeddings.embed import SeqVecEmbedder
|
175 |
encoder = SeqVecEmbedder()
|
|
|
177 |
for emb in embeddings:
|
178 |
embedding = encoder.reduce_per_protein(emb)
|
179 |
break
|
|
|
|
|
|
|
180 |
|
181 |
st.markdown('### Retrieval')
|
182 |
st.write('TODO HyperPCM predicts the QSAR model for the given protein target.')
|
|
|
200 |
'CC(=O)Nc1ccc(O[C@@H]2O[C@H](C(=O)O)[C@@H](O)[C@H](O)[C@H]2O)cc1']]
|
201 |
cols = st.columns(5)
|
202 |
for j, col in enumerate(cols):
|
203 |
+
with col:
|
204 |
for i in range(int(selected_k/5)):
|
205 |
mol = Chem.MolFromSmiles(dummy_smiles[i,j])
|
206 |
mol_img = Chem.Draw.MolToImage(mol)
|