emmas96 commited on
Commit
51218b3
·
1 Parent(s): 3c1a27d

bug in retrieval

Browse files
Files changed (1) hide show
  1. app.py +12 -13
app.py CHANGED
@@ -70,7 +70,6 @@ def predict_dti():
70
  selected_encoder = st.selectbox(
71
  'Select encoder for drug compound',('None', 'CDDD', 'MolBERT')
72
  )
73
- st.image('molecule_encoder.png')
74
  if smiles:
75
  if selected_encoder == 'CDDD':
76
  from cddd.inference import InferenceModel
@@ -92,11 +91,13 @@ def predict_dti():
92
  molbert_model = MolBertFeaturizer(checkpoint_path, max_seq_len=500, embedding_type='average-1-cat-pooled')
93
  embedding = molbert_model.transform([smiles])
94
  else:
95
- st.write('No pre-trained version of HyperPCM is available for the chosen encoder.')
96
  embedding = None
 
97
  if embedding is not None:
98
- st.write(f'{selected_encoder} embedding')
99
- st.write(embedding)
 
100
 
101
  with col2:
102
  st.markdown('### Target')
@@ -113,7 +114,6 @@ def predict_dti():
113
  selected_encoder = st.selectbox(
114
  'Select encoder for protein target',('None', 'SeqVec', 'UniRep', 'ESM-1b', 'ProtT5')
115
  )
116
- st.image('protein_encoder.png')
117
  if sequence:
118
  if selected_encoder == 'SeqVec':
119
  from bio_embeddings.embed import SeqVecEmbedder
@@ -143,11 +143,13 @@ def predict_dti():
143
  embedding = encoder.reduce_per_protein(emb)
144
  break
145
  else:
146
- st.write('No pre-trained version of HyperPCM is available for the chosen encoder.')
147
  embedding = None
 
148
  if embedding is not None:
149
- st.write(f'{selected_encoder} embedding')
150
- st.write(embedding)
 
151
 
152
  st.write('TODO run inference with HyperPCM on the given drug compound and protein target.')
153
 
@@ -167,7 +169,7 @@ def retrieval():
167
 
168
  with col2:
169
  st.write('Encoding with SecVec')
170
- st.image('protein_encoder.png')
171
 
172
  from bio_embeddings.embed import SeqVecEmbedder
173
  encoder = SeqVecEmbedder()
@@ -175,9 +177,6 @@ def retrieval():
175
  for emb in embeddings:
176
  embedding = encoder.reduce_per_protein(emb)
177
  break
178
- st.write('SeqVec embedding')
179
- st.write(embedding)
180
- st.write(np.transpose(embedding))
181
 
182
  st.markdown('### Retrieval')
183
  st.write('TODO HyperPCM predicts the QSAR model for the given protein target.')
@@ -201,7 +200,7 @@ def retrieval():
201
  'CC(=O)Nc1ccc(O[C@@H]2O[C@H](C(=O)O)[C@@H](O)[C@H](O)[C@H]2O)cc1']]
202
  cols = st.columns(5)
203
  for j, col in enumerate(cols):
204
- with cols:
205
  for i in range(int(selected_k/5)):
206
  mol = Chem.MolFromSmiles(dummy_smiles[i,j])
207
  mol_img = Chem.Draw.MolToImage(mol)
 
70
  selected_encoder = st.selectbox(
71
  'Select encoder for drug compound',('None', 'CDDD', 'MolBERT')
72
  )
 
73
  if smiles:
74
  if selected_encoder == 'CDDD':
75
  from cddd.inference import InferenceModel
 
91
  molbert_model = MolBertFeaturizer(checkpoint_path, max_seq_len=500, embedding_type='average-1-cat-pooled')
92
  embedding = molbert_model.transform([smiles])
93
  else:
94
+ #st.write('No pre-trained version of HyperPCM is available for the chosen encoder.')
95
  embedding = None
96
+ st.image('molecule_encoder.png')
97
  if embedding is not None:
98
+ #st.write(f'{selected_encoder} embedding')
99
+ #st.write(embedding)
100
+ st.image('molecule_encoder_done.png')
101
 
102
  with col2:
103
  st.markdown('### Target')
 
114
  selected_encoder = st.selectbox(
115
  'Select encoder for protein target',('None', 'SeqVec', 'UniRep', 'ESM-1b', 'ProtT5')
116
  )
 
117
  if sequence:
118
  if selected_encoder == 'SeqVec':
119
  from bio_embeddings.embed import SeqVecEmbedder
 
143
  embedding = encoder.reduce_per_protein(emb)
144
  break
145
  else:
146
+ #st.write('No pre-trained version of HyperPCM is available for the chosen encoder.')
147
  embedding = None
148
+ st.image('protein_encoder.png')
149
  if embedding is not None:
150
+ #st.write(f'{selected_encoder} embedding')
151
+ #st.write(embedding)
152
+ st.image('protein_encoder_done.png')
153
 
154
  st.write('TODO run inference with HyperPCM on the given drug compound and protein target.')
155
 
 
169
 
170
  with col2:
171
  st.write('Encoding with SecVec')
172
+ st.image('protein_encoder_done.png')
173
 
174
  from bio_embeddings.embed import SeqVecEmbedder
175
  encoder = SeqVecEmbedder()
 
177
  for emb in embeddings:
178
  embedding = encoder.reduce_per_protein(emb)
179
  break
 
 
 
180
 
181
  st.markdown('### Retrieval')
182
  st.write('TODO HyperPCM predicts the QSAR model for the given protein target.')
 
200
  'CC(=O)Nc1ccc(O[C@@H]2O[C@H](C(=O)O)[C@@H](O)[C@H](O)[C@H]2O)cc1']]
201
  cols = st.columns(5)
202
  for j, col in enumerate(cols):
203
+ with col:
204
  for i in range(int(selected_k/5)):
205
  mol = Chem.MolFromSmiles(dummy_smiles[i,j])
206
  mol_img = Chem.Draw.MolToImage(mol)