File size: 24,593 Bytes
ad8946e
 
 
 
 
 
 
 
f0f70ca
ee400a8
 
1831948
ad8946e
 
8efc195
ad8946e
5565ca5
 
ad8946e
 
3cd2108
b9ee97e
ad8946e
f81b425
 
 
8efc195
 
 
ad8946e
ee400a8
ad8946e
ee400a8
ad8946e
 
ee400a8
f0f70ca
ad8946e
1831948
8efc195
 
ad8946e
 
 
 
 
7f69142
1831948
ad8946e
 
 
 
 
 
 
f0f70ca
 
 
 
 
 
ad8946e
 
1831948
ad8946e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1831948
5565ca5
9b4ede0
5565ca5
 
 
 
 
 
 
 
 
 
 
 
 
 
01f0185
8efc195
5565ca5
 
 
5fcde85
9b4ede0
1831948
5fcde85
ad8946e
 
dec9aa7
5fcde85
5565ca5
5fcde85
5565ca5
5fcde85
 
5565ca5
5fcde85
9b4ede0
 
 
5fcde85
 
 
5565ca5
5fcde85
 
5565ca5
 
 
5fcde85
 
 
 
9b4ede0
 
 
 
 
dec9aa7
9b4ede0
 
 
5565ca5
 
 
ad8946e
dec9aa7
ad8946e
1831948
86bd3cd
 
 
 
981f52f
86bd3cd
981f52f
86bd3cd
dec9aa7
 
 
 
86bd3cd
981f52f
 
5565ca5
1831948
ad8946e
 
 
 
 
 
 
 
1831948
ee400a8
1831948
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5565ca5
1831948
d15f2d4
ad8946e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1831948
 
 
 
ad8946e
 
 
 
 
8efc195
 
 
ad8946e
 
 
 
 
 
 
 
1831948
 
 
 
 
ad8946e
 
 
 
 
 
 
 
 
d431c9d
ad8946e
ee400a8
ad8946e
 
 
 
 
 
 
 
a30b6a4
 
ad8946e
 
1831948
58da50c
ee400a8
ad8946e
a30b6a4
 
 
 
0702c36
a30b6a4
ad8946e
a30b6a4
ad8946e
 
 
 
 
 
1831948
 
 
ad8946e
 
1831948
 
ad8946e
 
 
a30b6a4
ad8946e
a30b6a4
ad8946e
7f69142
 
5565ca5
0702c36
5565ca5
 
0702c36
981f52f
0702c36
1831948
 
dec9aa7
1831948
86bd3cd
58da50c
 
21dc0af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1831948
dec9aa7
ee400a8
1831948
 
 
 
8efc195
ad8946e
ee400a8
86bd3cd
8efc195
 
 
 
 
1831948
 
8efc195
1831948
 
8efc195
1831948
 
 
191a4f0
1831948
 
 
 
 
86bd3cd
1831948
 
 
 
 
 
 
 
 
 
86bd3cd
1831948
 
 
 
 
d431c9d
1831948
 
 
 
 
8efc195
1831948
dec9aa7
fd4c3a4
1831948
 
 
 
 
 
8efc195
 
1831948
 
5565ca5
8efc195
 
86bd3cd
8efc195
5565ca5
21dc0af
 
 
981f52f
 
21dc0af
981f52f
21dc0af
 
 
 
 
 
 
 
 
 
fd4c3a4
21dc0af
 
 
 
 
 
 
 
981f52f
1831948
 
5f8442e
 
5565ca5
1831948
 
 
 
 
 
 
ad8946e
 
 
 
 
 
8efc195
 
 
 
 
1848c43
 
5565ca5
8efc195
5565ca5
 
 
8efc195
1848c43
dec9aa7
 
 
ad8946e
dec9aa7
981f52f
1831948
ad8946e
dec9aa7
86bd3cd
 
981f52f
ad8946e
1848c43
ad8946e
 
1848c43
5565ca5
1831948
ad8946e
fd4c3a4
21dc0af
fd4c3a4
80b48eb
5565ca5
 
1831948
80b48eb
dec9aa7
80b48eb
1831948
 
dec9aa7
1831948
ee400a8
 
 
dec9aa7
54b13e2
1831948
ee400a8
dec9aa7
 
54b13e2
1831948
9b4ede0
1831948
 
 
b31f036
1848c43
dec9aa7
 
981f52f
dec9aa7
21dc0af
2d26eaf
01f0185
1831948
 
 
01f0185
21dc0af
 
5565ca5
 
1831948
21dc0af
 
 
 
 
1831948
ad8946e
 
 
 
21dc0af
29c62c0
ad8946e
 
e765d79
1831948
ee400a8
 
1831948
 
 
 
 
 
21dc0af
3dee4f6
353d877
dec9aa7
21dc0af
dec9aa7
1831948
 
 
 
 
dec9aa7
 
ee400a8
dec9aa7
981f52f
ad8946e
 
1831948
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
import os
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from facenet_pytorch import InceptionResnetV1, MTCNN
import mediapipe as mp
from fer import FER
from sklearn.cluster import DBSCAN
from sklearn.preprocessing import MinMaxScaler
from sklearn.decomposition import PCA
import umap
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
from moviepy.editor import VideoFileClip
from PIL import Image
import gradio as gr
import tempfile
import shutil
import tensorflow as tf

print(torch.__version__)
print(torch.version.cuda)

matplotlib.rcParams['figure.dpi'] = 400
matplotlib.rcParams['savefig.dpi'] = 400

# Initialize models and other global variables
device = 'cuda'

mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.98, 0.98, 0.98], min_face_size=100)
model = InceptionResnetV1(pretrained='vggface2').eval().to(device)
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.7)
emotion_detector = FER(mtcnn=False)


def frame_to_timecode(frame_num, total_frames, duration):
    total_seconds = (frame_num / total_frames) * duration
    hours = int(total_seconds // 3600)
    minutes = int((total_seconds % 3600) // 60)
    seconds = int(total_seconds % 60)
    milliseconds = int((total_seconds - int(total_seconds)) * 1000)
    return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}"


def get_face_embedding_and_emotion(face_img):
    face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255
    face_tensor = (face_tensor - 0.5) / 0.5
    face_tensor = face_tensor.to(device)
    with torch.no_grad():
        embedding = model(face_tensor)

    emotions = emotion_detector.detect_emotions(face_img)
    if emotions:
        emotion_dict = emotions[0]['emotions']
    else:
        emotion_dict = {e: 0 for e in ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']}

    return embedding.cpu().numpy().flatten(), emotion_dict


def alignFace(img):
    img_raw = img.copy()
    results = face_mesh.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
    if not results.multi_face_landmarks:
        return None
    landmarks = results.multi_face_landmarks[0].landmark
    left_eye = np.array([[landmarks[33].x, landmarks[33].y], [landmarks[160].x, landmarks[160].y],
                         [landmarks[158].x, landmarks[158].y], [landmarks[144].x, landmarks[144].y],
                         [landmarks[153].x, landmarks[153].y], [landmarks[145].x, landmarks[145].y]])
    right_eye = np.array([[landmarks[362].x, landmarks[362].y], [landmarks[385].x, landmarks[385].y],
                          [landmarks[387].x, landmarks[387].y], [landmarks[263].x, landmarks[263].y],
                          [landmarks[373].x, landmarks[373].y], [landmarks[380].x, landmarks[380].y]])
    left_eye_center = left_eye.mean(axis=0).astype(np.int32)
    right_eye_center = right_eye.mean(axis=0).astype(np.int32)
    dY = right_eye_center[1] - left_eye_center[1]
    dX = right_eye_center[0] - left_eye_center[0]
    angle = np.degrees(np.arctan2(dY, dX))
    desired_angle = 0
    angle_diff = desired_angle - angle
    height, width = img_raw.shape[:2]
    center = (width // 2, height // 2)
    rotation_matrix = cv2.getRotationMatrix2D(center, angle_diff, 1)
    new_img = cv2.warpAffine(img_raw, rotation_matrix, (width, height))
    return new_img


def extract_frames(video_path, output_folder, desired_fps, progress_callback=None):
    os.makedirs(output_folder, exist_ok=True)
    clip = VideoFileClip(video_path)
    original_fps = clip.fps
    duration = clip.duration
    total_frames = int(duration * original_fps)
    step = max(1, original_fps / desired_fps)
    total_frames_to_extract = int(total_frames / step)

    frame_count = 0
    for t in np.arange(0, duration, step / original_fps):
        frame = clip.get_frame(t)
        img = Image.fromarray(frame)
        img.save(os.path.join(output_folder, f"frame_{frame_count:04d}.jpg"))
        frame_count += 1
        if progress_callback:
            progress = min(100, (frame_count / total_frames_to_extract) * 100)
            progress_callback(progress, f"Extracting frame")
        if frame_count >= total_frames_to_extract:
            break
    clip.close()
    return frame_count, original_fps


def process_frames(frames_folder, aligned_faces_folder, frame_count, progress, batch_size):
    embeddings_by_frame = {}
    emotions_by_frame = {}
    aligned_face_paths = []
    frame_files = sorted([f for f in os.listdir(frames_folder) if f.endswith('.jpg')])

    for i in range(0, len(frame_files), batch_size):
        batch_files = frame_files[i:i + batch_size]
        batch_frames = []
        batch_nums = []

        for frame_file in batch_files:
            frame_num = int(frame_file.split('_')[1].split('.')[0])
            frame_path = os.path.join(frames_folder, frame_file)
            frame = cv2.imread(frame_path)
            if frame is not None:
                batch_frames.append(frame)
                batch_nums.append(frame_num)

        if batch_frames:
            batch_boxes, batch_probs = mtcnn.detect(batch_frames)

            for j, (frame, frame_num, boxes, probs) in enumerate(
                    zip(batch_frames, batch_nums, batch_boxes, batch_probs)):
                if boxes is not None and len(boxes) > 0 and probs[0] >= 0.99:
                    x1, y1, x2, y2 = [int(b) for b in boxes[0]]
                    face = frame[y1:y2, x1:x2]
                    if face.size > 0:
                        aligned_face = alignFace(face)
                        if aligned_face is not None:
                            aligned_face_resized = cv2.resize(aligned_face, (160, 160))
                            output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
                            cv2.imwrite(output_path, aligned_face_resized)
                            aligned_face_paths.append(output_path)
                            embedding, emotion = get_face_embedding_and_emotion(aligned_face_resized)
                            embeddings_by_frame[frame_num] = embedding
                            emotions_by_frame[frame_num] = emotion

        progress((i + len(batch_files)) / frame_count,
                 f"Processing frames {i + 1} to {min(i + len(batch_files), frame_count)} of {frame_count}")

    return embeddings_by_frame, emotions_by_frame, aligned_face_paths


def cluster_faces(embeddings):
    if len(embeddings) < 2:
        print("Not enough faces for clustering. Assigning all to one cluster.")
        return np.zeros(len(embeddings), dtype=int)

    X = np.stack(embeddings)

    dbscan = DBSCAN(eps=0.5, min_samples=5, metric='cosine')
    clusters = dbscan.fit_predict(X)

    if np.all(clusters == -1):
        print("DBSCAN assigned all to noise. Considering as one cluster.")
        return np.zeros(len(embeddings), dtype=int)

    return clusters


def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder):
    for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters):
        person_folder = os.path.join(organized_faces_folder, f"person_{cluster}")
        os.makedirs(person_folder, exist_ok=True)
        src = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
        dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg")
        shutil.copy(src, dst)


def find_optimal_components(embeddings, max_components=20):
    pca = PCA(n_components=max_components)
    pca.fit(embeddings)

    explained_variance_ratio = pca.explained_variance_ratio_
    cumulative_variance_ratio = np.cumsum(explained_variance_ratio)

    # Plot explained variance ratio
    plt.figure(figsize=(10, 6))
    plt.plot(range(1, max_components + 1), cumulative_variance_ratio, 'bo-')
    plt.xlabel('Number of Components')
    plt.ylabel('Cumulative Explained Variance Ratio')
    plt.title('Explained Variance Ratio vs. Number of Components')
    plt.grid(True)

    # Find elbow point
    differences = np.diff(cumulative_variance_ratio)
    elbow_point = np.argmin(differences) + 1

    plt.axvline(x=elbow_point, color='r', linestyle='--', label=f'Elbow point: {elbow_point}')
    plt.legend()

    return elbow_point, plt


def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, output_folder,
                            video_duration):
    emotions = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']
    person_data = {}

    for (frame_num, embedding), (_, emotion_dict), cluster in zip(embeddings_by_frame.items(),
                                                                  emotions_by_frame.items(), clusters):
        if cluster not in person_data:
            person_data[cluster] = []
        person_data[cluster].append((frame_num, embedding, {e: emotion_dict[e] for e in emotions}))

    largest_cluster = max(person_data, key=lambda k: len(person_data[k]))

    data = person_data[largest_cluster]
    data.sort(key=lambda x: x[0])
    frames, embeddings, emotions_data = zip(*data)

    embeddings_array = np.array(embeddings)
    np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array)

    # Find optimal number of components
    optimal_components, _ = find_optimal_components(embeddings_array)

    reducer = umap.UMAP(n_components=optimal_components, random_state=1)
    embeddings_reduced = reducer.fit_transform(embeddings)

    scaler = MinMaxScaler(feature_range=(0, 1))
    embeddings_reduced_normalized = scaler.fit_transform(embeddings_reduced)

    total_frames = max(frames)
    timecodes = [frame_to_timecode(frame, total_frames, video_duration) for frame in frames]
    times_in_minutes = [frame / total_frames * video_duration / 60 for frame in frames]

    df_data = {
        'Frame': frames,
        'Timecode': timecodes,
        'Time (Minutes)': times_in_minutes,
        'Embedding_Index': range(len(embeddings))
    }

    # Add raw embeddings
    for i in range(len(embeddings[0])):
        df_data[f'Raw_Embedding_{i}'] = [embedding[i] for embedding in embeddings]

    for i in range(optimal_components):
        df_data[f'Comp {i + 1}'] = embeddings_reduced_normalized[:, i]

    for emotion in emotions:
        df_data[emotion] = [e[emotion] for e in emotions_data]

    df = pd.DataFrame(df_data)

    return df, largest_cluster


class LSTMAutoencoder(nn.Module):
    def __init__(self, input_size, hidden_size=128, num_layers=2):
        super(LSTMAutoencoder, self).__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_size, input_size)

    def forward(self, x):
        outputs, (hidden, _) = self.lstm(x)
        out = self.fc(outputs)
        return out


def lstm_anomaly_detection(X, feature_columns, raw_embedding_columns, epochs=100, batch_size=64):
    device = 'cuda'
    X = torch.FloatTensor(X).to(device)
    if X.dim() == 2:
        X = X.unsqueeze(0)
    elif X.dim() == 1:
        X = X.unsqueeze(0).unsqueeze(2)

    print(f"X shape after reshaping: {X.shape}")

    model = LSTMAutoencoder(input_size=X.shape[2]).to(device)
    criterion = nn.MSELoss()
    optimizer = optim.Adam(model.parameters())

    for epoch in range(epochs):
        model.train()
        optimizer.zero_grad()
        output = model(X)
        loss = criterion(output, X)
        loss.backward()
        optimizer.step()

        if epoch % 10 == 0:
            print(f"Epoch [{epoch}/{epochs}], Loss: {loss.item():.4f}")

    model.eval()
    with torch.no_grad():
        reconstructed = model(X).squeeze(0).cpu().numpy()

    mse_all = np.mean(np.power(X.squeeze(0).cpu().numpy() - reconstructed, 2), axis=1)

    component_columns = [col for col in feature_columns if col.startswith('Comp')]
    component_indices = [feature_columns.index(col) for col in component_columns]

    if len(component_indices) > 0:
        mse_comp = np.mean(
            np.power(X.squeeze(0).cpu().numpy()[:, component_indices] - reconstructed[:, component_indices], 2), axis=1)
    else:
        mse_comp = mse_all

    raw_embedding_indices = [feature_columns.index(col) for col in raw_embedding_columns]
    mse_raw = np.mean(np.power(X.squeeze(0).cpu().numpy()[:, raw_embedding_indices] - reconstructed[:, raw_embedding_indices], 2), axis=1)

    return mse_all, mse_comp, mse_raw

def embedding_anomaly_detection(embeddings, epochs=100, batch_size=64):
    device = 'cuda'
    X = torch.FloatTensor(embeddings).to(device)
    if X.dim() == 2:
        X = X.unsqueeze(0)
    elif X.dim() == 1:
        X = X.unsqueeze(0).unsqueeze(2)

    model = LSTMAutoencoder(input_size=X.shape[2]).to(device)
    criterion = nn.MSELoss()
    optimizer = optim.Adam(model.parameters())

    for epoch in range(epochs):
        model.train()
        optimizer.zero_grad()
        output = model(X)
        loss = criterion(output, X)
        loss.backward()
        optimizer.step()

    model.eval()
    with torch.no_grad():
        reconstructed = model(X).squeeze(0).cpu().numpy()

    mse = np.mean(np.power(X.squeeze(0).cpu().numpy() - reconstructed, 2), axis=1)
    return mse

def determine_anomalies(mse_values, threshold=4):
    mean = np.mean(mse_values)
    std = np.std(mse_values)
    anomalies = mse_values > (mean + threshold * std)
    return anomalies


def plot_mse(df, mse_values, title, color='blue', time_threshold=1, hide_first_n=5):
    plt.figure(figsize=(16, 8), dpi=300)
    fig, ax = plt.subplots(figsize=(16, 8))

    df['Seconds'] = df['Timecode'].apply(
        lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))

    # Plot all points
    ax.scatter(df['Seconds'], mse_values, color=color, alpha=0.7, s=10)

    # Determine anomalies
    anomalies = determine_anomalies(mse_values)

    # Hide the first n anomalies
    visible_anomalies = np.where(anomalies)[0][hide_first_n:]
    ax.scatter(df['Seconds'].iloc[visible_anomalies], mse_values[visible_anomalies], color='red', s=50, zorder=5)

    # Group closely occurring anomalies and annotate only the highest MSE
    anomaly_data = list(zip(df['Timecode'].iloc[visible_anomalies],
                            df['Seconds'].iloc[visible_anomalies],
                            mse_values[visible_anomalies]))
    anomaly_data.sort(key=lambda x: x[1])  # Sort by seconds

    grouped_anomalies = []
    current_group = []
    for timecode, sec, mse in anomaly_data:
        if not current_group or sec - current_group[-1][1] <= time_threshold:
            current_group.append((timecode, sec, mse))
        else:
            grouped_anomalies.append(current_group)
            current_group = [(timecode, sec, mse)]
    if current_group:
        grouped_anomalies.append(current_group)

    for group in grouped_anomalies:
        highest_mse_anomaly = max(group, key=lambda x: x[2])
        timecode, sec, mse = highest_mse_anomaly
        ax.annotate(timecode, (sec, mse), textcoords="offset points", xytext=(0, 10),
                    ha='center', fontsize=8, color='red')

    # Add baseline (mean MSE) line
    mean_mse = np.mean(mse_values)
    ax.axhline(y=mean_mse, color='black', linestyle='--', linewidth=1)
    ax.text(df['Seconds'].max(), mean_mse, f'Baseline ({mean_mse:.6f})',
            verticalalignment='bottom', horizontalalignment='right', color='black', fontsize=8)

    # Set x-axis labels to timecodes
    max_seconds = df['Seconds'].max()
    num_ticks = 100
    tick_locations = np.linspace(0, max_seconds, num_ticks)
    tick_labels = [frame_to_timecode(int(s * df['Frame'].max() / max_seconds), df['Frame'].max(), max_seconds)
                   for s in tick_locations]

    ax.set_xticks(tick_locations)
    ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)

    ax.set_xlabel('Time')
    ax.set_ylabel('Mean Squared Error')
    ax.set_title(title)

    ax.grid(True, linestyle='--', alpha=0.7)
    plt.tight_layout()
    plt.close()
    return fig

def get_all_face_samples(organized_faces_folder, output_folder, largest_cluster):
    face_samples = {"most_frequent": [], "others": []}
    for cluster_folder in sorted(os.listdir(organized_faces_folder)):
        if cluster_folder.startswith("person_"):
            person_folder = os.path.join(organized_faces_folder, cluster_folder)
            face_files = sorted([f for f in os.listdir(person_folder) if f.endswith('.jpg')])
            if face_files:
                cluster_id = int(cluster_folder.split('_')[1])
                if cluster_id == largest_cluster:
                    for i, sample in enumerate(face_files):
                        face_path = os.path.join(person_folder, sample)
                        output_path = os.path.join(output_folder, f"face_sample_most_frequent_{i:04d}.jpg")
                        face_img = cv2.imread(face_path)
                        if face_img is not None:
                            small_face = cv2.resize(face_img, (160, 160))
                            cv2.imwrite(output_path, small_face)
                            face_samples["most_frequent"].append(output_path)
                else:
                    for i, sample in enumerate(face_files):
                        face_path = os.path.join(person_folder, sample)
                        output_path = os.path.join(output_folder, f"face_sample_other_{cluster_id:02d}_{i:04d}.jpg")
                        face_img = cv2.imread(face_path)
                        if face_img is not None:
                            small_face = cv2.resize(face_img, (160, 160))
                            cv2.imwrite(output_path, small_face)
                            face_samples["others"].append(output_path)
    return face_samples

def process_video(video_path, desired_fps, batch_size, progress=gr.Progress()):
    output_folder = "output"
    os.makedirs(output_folder, exist_ok=True)

    # Initialize plot variables
    mse_plot_all = None
    mse_plot_comp = None
    mse_plot_raw = None
    emotion_plots = [None] * 6  # For the 6 emotions
    face_samples = {"most_frequent": [], "others": []}

    with tempfile.TemporaryDirectory() as temp_dir:
        aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces')
        organized_faces_folder = os.path.join(temp_dir, 'organized_faces')
        os.makedirs(aligned_faces_folder, exist_ok=True)
        os.makedirs(organized_faces_folder, exist_ok=True)

        clip = VideoFileClip(video_path)
        video_duration = clip.duration
        clip.close()

        progress(0, "Starting frame extraction")
        frames_folder = os.path.join(temp_dir, 'extracted_frames')

        def extraction_progress(percent, message):
            progress(percent / 100, f"Extracting frames")

        frame_count, original_fps = extract_frames(video_path, frames_folder, desired_fps, extraction_progress)

        progress(1, "Frame extraction complete")
        progress(0.3, "Processing frames")
        embeddings_by_frame, emotions_by_frame, aligned_face_paths = process_frames(frames_folder, aligned_faces_folder,
                                                                                    frame_count,
                                                                                    progress, batch_size)

        if not aligned_face_paths:
            return ("No faces were extracted from the video.",
                    None, None, None, None, None, None, None, None, None, [], [])

        progress(0.6, "Clustering faces")
        embeddings = [embedding for _, embedding in embeddings_by_frame.items()]
        clusters = cluster_faces(embeddings)
        num_clusters = len(set(clusters))  # Get the number of unique clusters

        progress(0.7, "Organizing faces")
        organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder)

        progress(0.8, "Saving person data")
        df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps,
                                                      original_fps, temp_dir, video_duration)

        progress(0.85, "Getting face samples")
        face_samples = get_all_face_samples(organized_faces_folder, output_folder, largest_cluster)

        progress(0.9, "Performing anomaly detection")
        feature_columns = [col for col in df.columns if
                           col not in ['Frame', 'Timecode', 'Time (Minutes)', 'Embedding_Index']]
        raw_embedding_columns = [col for col in df.columns if col.startswith('Raw_Embedding_')]
        X = df[feature_columns].values

        try:
            mse_all, mse_comp, mse_raw = lstm_anomaly_detection(
                X, feature_columns, raw_embedding_columns, batch_size=batch_size)

            progress(0.95, "Generating plots")
            mse_plot_all = plot_mse(df, mse_all, "Facial Features + Emotions", color='blue', hide_first_n=5)
            mse_plot_comp = plot_mse(df, mse_comp, "Facial Features", color='deepskyblue', hide_first_n=5)
            mse_plot_raw = plot_mse(df, mse_raw, "Facial Embeddings", color='steelblue', hide_first_n=5)

            emotion_plots = [
                plot_mse(df, embedding_anomaly_detection(df[emotion].values.reshape(-1, 1)),
                         f"MSE: {emotion.capitalize()}", color=color, hide_first_n=5)
                for emotion, color in zip(['fear', 'sad', 'angry', 'happy', 'surprise', 'neutral'],
                                          ['purple', 'green', 'orange', 'darkblue', 'gold', 'grey'])
            ]

        except Exception as e:
            print(f"Error details: {str(e)}")
            return (f"Error in anomaly detection: {str(e)}",
                    None, None, None, None, None, None, None, None, None, [], [])

        progress(1.0, "Preparing results")
        results = f"Number of persons/clusters detected: {num_clusters}\n\n"
        results += f"Breakdown of persons/clusters:\n"
        for cluster_id in range(num_clusters):
            results += f"Person/Cluster {cluster_id + 1}: {len([c for c in clusters if c == cluster_id])} frames\n"

        return (
            results,
            mse_plot_all,
            mse_plot_comp,
            mse_plot_raw,
            *emotion_plots,
            face_samples["most_frequent"],
            face_samples["others"]
        )

# Define gallery outputs
gallery_outputs = [
    gr.Gallery(label="Most Frequent Person Random Samples", columns=5, rows=2, height="auto"),
    gr.Gallery(label="Other Persons Random Samples", columns=5, rows=1, height="auto")
]

# Update the Gradio interface
iface = gr.Interface(
    fn=process_video,
    inputs=[
        gr.Video(),
        gr.Slider(minimum=1, maximum=20, step=1, value=10, label="Desired FPS"),
        gr.Slider(minimum=1, maximum=32, step=1, value=16, label="Batch Size")
    ],
    outputs=[
        gr.Textbox(label="Anomaly Detection Results"),
        gr.Plot(label="MSE: Facial Features + Emotions"),
        gr.Plot(label="MSE: Facial Features"),
        gr.Plot(label="MSE: Facial Embeddings"),
        gr.Plot(label="MSE: Fear"),
        gr.Plot(label="MSE: Sad"),
        gr.Plot(label="MSE: Angry"),
        gr.Plot(label="MSE: Happy"),
        gr.Plot(label="MSE: Surprise"),
        gr.Plot(label="MSE: Neutral"),
    ] + gallery_outputs,
    title="Facial Expressions Anomaly Detection",
    description="""
        This application detects anomalies in facial expressions and emotions from a video input. 
        It identifies distinct persons in the video and provides sample faces for each, with multiple samples for the most frequent person.

        The graphs show Mean Squared Error (MSE) values for different aspects of facial expressions and emotions over time.
        Each point represents a frame, with red points indicating detected anomalies.
        Anomalies are annotated with their corresponding timecodes.
        Higher MSE values indicate more unusual or anomalous expressions or emotions at that point in the video.

        Adjust the parameters as needed:
        - Desired FPS: Frames per second to analyze (lower for faster processing)
        - Batch Size: Affects processing speed and GPU memory usage
        """,
    allow_flagging="never"
)

# Launch the interface
iface.launch()