Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,375 Bytes
2fd5bd1 ab983f2 2fd5bd1 c0cf4b6 2fd5bd1 7be8c80 554fad9 2fd5bd1 350b93d 2fd5bd1 9aae468 2fd5bd1 8b40745 554fad9 2fd5bd1 c687aa5 2fd5bd1 7be8c80 2fd5bd1 80c3a22 e3da6fc 2fd5bd1 554fad9 0930495 71141f1 c35010f 2fd5bd1 6fcc1a7 10268d7 2fd5bd1 9353b81 2fd5bd1 6136e66 2fd5bd1 6136e66 2fd5bd1 6fcc1a7 2fd5bd1 6fcc1a7 80c3a22 2fd5bd1 554fad9 2c472d5 0314275 2fd5bd1 7bd01b2 bc534c7 a8057ad aa94aa2 0cad593 a8057ad aa94aa2 a8057ad 0314275 a8057ad 457b416 2fd5bd1 f4a1397 2fd5bd1 7f2f8a9 c0cf4b6 2fd5bd1 79ebb83 ffdb810 c0cf4b6 e21b5a0 7be8c80 c7abc95 36815aa 554fad9 9383295 c7abc95 6f8cde1 36815aa 35eabb3 e3da6fc 35eabb3 c7abc95 7291b44 0956914 7291b44 ad1ae32 0956914 c7abc95 ffdb810 9383295 ffdb810 c7abc95 378493f c0cf4b6 36815aa 750c1cd c0cf4b6 750c1cd 074432c 9353b81 e3da6fc 9353b81 e3da6fc 9383295 9353b81 2752d4c 2fd5bd1 36815aa 2fd5bd1 36815aa 0c0a153 e7a29cf 2fd5bd1 9353b81 e7a29cf 2fd5bd1 7f2f8a9 2e254d8 2fd5bd1 7be8c80 2fd5bd1 9353b81 2fd5bd1 a2679e2 2fd5bd1 aa3e2b2 2fd5bd1 f4a1397 2fd5bd1 7f2f8a9 c0cf4b6 2fd5bd1 f238e99 2fd5bd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
import spaces
import gradio as gr
import numpy as np
#import tensorrt as trt
import random
import torch
from diffusers import StableDiffusion3Pipeline, AutoencoderKL, StableDiffusionXLImg2ImgPipeline, EulerAncestralDiscreteScheduler
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
#from threading import Thread
#from transformers import pipeline
from transformers import T5Tokenizer, T5ForConditionalGeneration
import re
import paramiko
import urllib
import time
import os
from image_gen_aux import UpscaleWithModel
from huggingface_hub import hf_hub_download
from models.transformer_sd3 import SD3Transformer2DModel
from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
from PIL import Image
FTP_HOST = "1ink.us"
FTP_USER = "ford442"
FTP_PASS = "GoogleBez12!"
FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
#torch.backends.cudnn.benchmark = False
torch.backends.cuda.preferred_blas_library="cublas"
#torch.backends.cuda.preferred_linalg_library="cusolver"
torch.set_float32_matmul_precision("highest")
hftoken = os.getenv("HF_AUTH_TOKEN")
image_encoder_path = "google/siglip-so400m-patch14-384"
ipadapter_path = hf_hub_download(repo_id="InstantX/SD3.5-Large-IP-Adapter", filename="ip-adapter.bin")
def upload_to_ftp(filename):
try:
transport = paramiko.Transport((FTP_HOST, 22))
destination_path=FTP_DIR+filename
transport.connect(username = FTP_USER, password = FTP_PASS)
sftp = paramiko.SFTPClient.from_transport(transport)
sftp.put(filename, destination_path)
sftp.close()
transport.close()
print(f"Uploaded {filename} to FTP server")
except Exception as e:
print(f"FTP upload error: {e}")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch_dtype = torch.bfloat16
checkpoint = "microsoft/Phi-3.5-mini-instruct"
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
transformer = SD3Transformer2DModel.from_pretrained(
model_path,
subfolder="transformer",
torch_dtype=torch.bfloat16
)
pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16", transformer=transformer).to(device=torch.device("cuda:0"), dtype=torch.bfloat16)
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(torch.device("cuda:0"))
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/RealVis_Medium_1.0b_bf16", torch_dtype=torch.bfloat16)
#pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium", token=hftoken, torch_dtype=torch.float32, device_map='balanced')
# pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++")
#pipe.scheduler.config.requires_aesthetics_score = False
#pipe.enable_model_cpu_offload()
#pipe.to(device)
#pipe.to(device=device, dtype=torch.bfloat16)
#pipe = torch.compile(pipe)
# pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear")
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("ford442/stable-diffusion-xl-refiner-1.0-bf16", vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16"), use_safetensors=True, requires_aesthetics_score=True).to(device=torch.device("cuda:0"), dtype=torch.bfloat16)
#refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float32, requires_aesthetics_score=True, device_map='balanced')
refiner.scheduler=EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config, beta_schedule="scaled_linear")
#refiner.enable_model_cpu_offload()
#refiner.scheduler.config.requires_aesthetics_score=False
#refiner.to(device)
#refiner = torch.compile(refiner)
#refiner.scheduler = EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config, beta_schedule="scaled_linear")
#refiner.scheduler = EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config)
tokenizer = AutoTokenizer.from_pretrained(checkpoint, add_prefix_space=False, device_map='balanced')
tokenizer.tokenizer_legacy=False
model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map='balanced')
#model = torch.compile(model)
pipe.init_ipadapter(
ip_adapter_path=ipadapter_path,
image_encoder_path=image_encoder_path,
nb_token=64,
)
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
def filter_text(text,phraseC):
"""Filters out the text up to and including 'Rewritten Prompt:'."""
phrase = "Rewritten Prompt:"
phraseB = "rewritten text:"
pattern = f"(.*?){re.escape(phrase)}(.*)"
patternB = f"(.*?){re.escape(phraseB)}(.*)"
# matchB = re.search(patternB, text)
matchB = re.search(patternB, text, flags=re.DOTALL)
if matchB:
filtered_text = matchB.group(2)
match = re.search(pattern, filtered_text, flags=re.DOTALL)
if match:
filtered_text = match.group(2)
filtered_text = re.sub(phraseC, "", filtered_text, flags=re.DOTALL) # Replaces the matched pattern with an empty string
return filtered_text
else:
return filtered_text
else:
# Handle the case where no match is found
return text
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096
@spaces.GPU(duration=80)
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
expanded,
latent_file, # Add latents file input
progress=gr.Progress(track_tqdm=True),
):
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
if expanded:
system_prompt_rewrite = (
"You are an AI assistant that rewrites image prompts to be more descriptive and detailed."
)
user_prompt_rewrite = (
"Rewrite this prompt to be more descriptive and detailed and only return the rewritten text: "
)
user_prompt_rewrite_2 = (
"Rephrase this scene to have more elaborate details: "
)
input_text = f"{system_prompt_rewrite} {user_prompt_rewrite} {prompt}"
input_text_2 = f"{system_prompt_rewrite} {user_prompt_rewrite_2} {prompt}"
print("-- got prompt --")
# Encode the input text and include the attention mask
encoded_inputs = tokenizer(input_text, return_tensors="pt", return_attention_mask=True)
encoded_inputs_2 = tokenizer(input_text_2, return_tensors="pt", return_attention_mask=True)
# Ensure all values are on the correct device
input_ids = encoded_inputs["input_ids"].to(device)
input_ids_2 = encoded_inputs_2["input_ids"].to(device)
attention_mask = encoded_inputs["attention_mask"].to(device)
attention_mask_2 = encoded_inputs_2["attention_mask"].to(device)
print("-- tokenize prompt --")
# Google T5
#input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=512,
temperature=0.2,
top_p=0.9,
do_sample=True,
)
outputs_2 = model.generate(
input_ids=input_ids_2,
attention_mask=attention_mask_2,
max_new_tokens=65,
temperature=0.2,
top_p=0.9,
do_sample=True,
)
# Use the encoded tensor 'text_inputs' here
enhanced_prompt = tokenizer.decode(outputs[0], skip_special_tokens=True)
enhanced_prompt_2 = tokenizer.decode(outputs_2[0], skip_special_tokens=True)
print('-- generated prompt --')
enhanced_prompt = filter_text(enhanced_prompt,prompt)
enhanced_prompt_2 = filter_text(enhanced_prompt_2,prompt)
print('-- filtered prompt --')
print(enhanced_prompt)
print('-- filtered prompt 2 --')
print(enhanced_prompt_2)
else:
enhanced_prompt = prompt
enhanced_prompt_2 = prompt
if latent_file: # Check if a latent file is provided
# initial_latents = pipe.prepare_latents(
# batch_size=1,
# num_channels_latents=pipe.transformer.in_channels,
# height=pipe.transformer.config.sample_size[0],
# width=pipe.transformer.config.sample_size[1],
# dtype=pipe.transformer.dtype,
# device=pipe.device,
# generator=generator,
# )
sd_image_a = Image.open(latent_file.name)
print("-- using image file --")
print('-- generating image --')
#with torch.no_grad():
result = pipe(
clip_image=image,
prompt=prompt,
ipadapter_scale=scale,
width=width,
height=height,
generator=torch.Generator().manual_seed(seed)
).images[0]
rv_path = f"sd35_{seed}.png"
sd_image[0].save(rv_path,optimize=False,compress_level=0)
upload_to_ftp(rv_path)
else:
print('-- generating image --')
#with torch.no_grad():
sd_image = pipe(
prompt=prompt, # This conversion is fine
prompt_2=enhanced_prompt_2,
prompt_3=enhanced_prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
# latents=None,
# output='latent',
generator=generator,
max_sequence_length=512
).images[0]
print('-- got image --')
sd35_image_image = pipe.vae.decode(sd_image / 0.18215).sample
sd35_image = sd35_image.cpu().permute(0, 2, 3, 1).float().detach().numpy()
sd35_image = (sd35_image * 255).round().astype("uint8")
image_pil = Image.fromarray(sd35_image[0])
sd35_path = f"sd35_{seed}.png"
image_pil.save(sd35_path,optimize=False,compress_level=0)
upload_to_ftp(sd35_path)
#sd35_path = f"sd35_{seed}.png"
#sd_image.save(sd35_path,optimize=False,compress_level=0)
#upload_to_ftp(sd35_path)
# Convert the generated image to a tensor
#generated_image_tensor = torch.tensor([np.array(sd_image).transpose(2, 0, 1)]).to('cuda') / 255.0
# Encode the generated image into latents
#with torch.no_grad():
# generated_latents = pipe.vae.encode(generated_image_tensor.to(torch.bfloat16)).latent_dist.sample().mul_(0.18215)
#latent_path = f"sd35m_{seed}.pt"
# Save the latents to a .pt file
#torch.save(generated_latents, latent_path)
#upload_to_ftp(latent_path)
#refiner.scheduler.set_timesteps(num_inference_steps,device)
refine = refiner(
prompt=f"{enhanced_prompt_2}, high quality masterpiece, complex details",
negative_prompt = negative_prompt,
guidance_scale=7.5,
num_inference_steps=num_inference_steps,
image=sd_image,
generator=generator,
).images[0]
refine_path = f"sd35_refine_{seed}.png"
refine.save(refine_path,optimize=False,compress_level=0)
upload_to_ftp(refine_path)
return refine, seed, enhanced_prompt
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
body{
background-color: blue;
}
"""
def repeat_infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
num_iterations, # New input for number of iterations
):
i = 0
while i < num_iterations:
time.sleep(700) # Wait for 10 minutes (600 seconds)
result, seed, image_path, enhanced_prompt = infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
)
# Optionally, you can add logic here to process the results of each iteration
# For example, you could display the image, save it with a different name, etc.
i += 1
return result, seed, image_path, enhanced_prompt
with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Text-to-Image StableDiffusion 3.5 Medium (with refine)")
expanded_prompt_output = gr.Textbox(label="Expanded Prompt", lines=5) # Add this line
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
value="A captivating Christmas scene.",
container=False,
)
options = [True, False]
expanded = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=options,
value=True,
label="Use expanded prompt: ",
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
latent_file = gr.File(label="Image File (optional)") # Add latents file input
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
num_iterations = gr.Number(
value=1000,
label="Number of Iterations")
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768, # Replace with defaults that work for your model
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=30.0,
step=0.1,
value=4.2, # Replace with defaults that work for your model
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=500,
step=1,
value=150, # Replace with defaults that work for your model
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
expanded,
latent_file, # Add latent_file to the inputs
],
outputs=[result, seed, expanded_prompt_output],
)
if __name__ == "__main__":
demo.launch() |