Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -53,9 +53,9 @@ torch_dtype = torch.bfloat16
|
|
53 |
|
54 |
checkpoint = "microsoft/Phi-3.5-mini-instruct"
|
55 |
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
56 |
-
vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", torch_dtype=torch.bfloat16)
|
57 |
|
58 |
-
pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16", torch_dtype=torch.bfloat16)
|
59 |
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/RealVis_Medium_1.0b_bf16", torch_dtype=torch.bfloat16)
|
60 |
#pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium", token=hftoken, torch_dtype=torch.float32, device_map='balanced')
|
61 |
|
@@ -63,20 +63,21 @@ pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-me
|
|
63 |
|
64 |
#pipe.scheduler.config.requires_aesthetics_score = False
|
65 |
#pipe.enable_model_cpu_offload()
|
66 |
-
pipe.to(device)
|
67 |
#pipe.to(device=device, dtype=torch.bfloat16)
|
68 |
#pipe = torch.compile(pipe)
|
69 |
# pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear")
|
70 |
|
71 |
-
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("ford442/stable-diffusion-xl-refiner-1.0-bf16", vae=vae, torch_dtype=torch.bfloat16, use_safetensors=True, requires_aesthetics_score=True)
|
72 |
#refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float32, requires_aesthetics_score=True, device_map='balanced')
|
73 |
|
74 |
#refiner.enable_model_cpu_offload()
|
75 |
|
76 |
#refiner.scheduler.config.requires_aesthetics_score=False
|
77 |
-
refiner.to(device)
|
78 |
#refiner = torch.compile(refiner)
|
79 |
-
refiner.scheduler = EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config, beta_schedule="scaled_linear")
|
|
|
80 |
|
81 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint, add_prefix_space=False, device_map='balanced')
|
82 |
tokenizer.tokenizer_legacy=False
|
|
|
53 |
|
54 |
checkpoint = "microsoft/Phi-3.5-mini-instruct"
|
55 |
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
56 |
+
vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", torch_dtype=torch.bfloat16).to(torch.device("cuda:0"))
|
57 |
|
58 |
+
pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16", torch_dtype=torch.bfloat16).to(torch.device("cuda:0"))
|
59 |
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/RealVis_Medium_1.0b_bf16", torch_dtype=torch.bfloat16)
|
60 |
#pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium", token=hftoken, torch_dtype=torch.float32, device_map='balanced')
|
61 |
|
|
|
63 |
|
64 |
#pipe.scheduler.config.requires_aesthetics_score = False
|
65 |
#pipe.enable_model_cpu_offload()
|
66 |
+
#pipe.to(device)
|
67 |
#pipe.to(device=device, dtype=torch.bfloat16)
|
68 |
#pipe = torch.compile(pipe)
|
69 |
# pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear")
|
70 |
|
71 |
+
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("ford442/stable-diffusion-xl-refiner-1.0-bf16", vae=vae, torch_dtype=torch.bfloat16, use_safetensors=True, requires_aesthetics_score=True).to(torch.device("cuda:0"))
|
72 |
#refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float32, requires_aesthetics_score=True, device_map='balanced')
|
73 |
|
74 |
#refiner.enable_model_cpu_offload()
|
75 |
|
76 |
#refiner.scheduler.config.requires_aesthetics_score=False
|
77 |
+
#refiner.to(device)
|
78 |
#refiner = torch.compile(refiner)
|
79 |
+
#refiner.scheduler = EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config, beta_schedule="scaled_linear")
|
80 |
+
refiner.scheduler = EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config)
|
81 |
|
82 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint, add_prefix_space=False, device_map='balanced')
|
83 |
tokenizer.tokenizer_legacy=False
|