Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -53,10 +53,10 @@ torch_dtype = torch.bfloat16
|
|
53 |
|
54 |
checkpoint = "microsoft/Phi-3.5-mini-instruct"
|
55 |
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
56 |
-
vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16"
|
57 |
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
58 |
|
59 |
-
pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16"
|
60 |
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(torch.device("cuda:0"))
|
61 |
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/RealVis_Medium_1.0b_bf16", torch_dtype=torch.bfloat16)
|
62 |
#pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium", token=hftoken, torch_dtype=torch.float32, device_map='balanced')
|
@@ -70,7 +70,7 @@ pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-me
|
|
70 |
#pipe = torch.compile(pipe)
|
71 |
# pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear")
|
72 |
|
73 |
-
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("ford442/stable-diffusion-xl-refiner-1.0-bf16", vae=vae,
|
74 |
#refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float32, requires_aesthetics_score=True, device_map='balanced')
|
75 |
|
76 |
#refiner.enable_model_cpu_offload()
|
@@ -79,7 +79,8 @@ refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("ford442/stable-diffu
|
|
79 |
#refiner.to(device)
|
80 |
#refiner = torch.compile(refiner)
|
81 |
#refiner.scheduler = EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config, beta_schedule="scaled_linear")
|
82 |
-
refiner.scheduler = EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config)
|
|
|
83 |
|
84 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint, add_prefix_space=False, device_map='balanced')
|
85 |
tokenizer.tokenizer_legacy=False
|
|
|
53 |
|
54 |
checkpoint = "microsoft/Phi-3.5-mini-instruct"
|
55 |
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
56 |
+
vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
57 |
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
58 |
|
59 |
+
pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(device=torch.device("cuda:0"), dtype=torch.bfloat16)
|
60 |
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(torch.device("cuda:0"))
|
61 |
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/RealVis_Medium_1.0b_bf16", torch_dtype=torch.bfloat16)
|
62 |
#pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium", token=hftoken, torch_dtype=torch.float32, device_map='balanced')
|
|
|
70 |
#pipe = torch.compile(pipe)
|
71 |
# pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear")
|
72 |
|
73 |
+
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("ford442/stable-diffusion-xl-refiner-1.0-bf16", vae=vae, scheduler=EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config, beta_schedule="scaled_linear"),use_safetensors=True, requires_aesthetics_score=True).to(device=torch.device("cuda:0"), dtype=torch.bfloat16)
|
74 |
#refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float32, requires_aesthetics_score=True, device_map='balanced')
|
75 |
|
76 |
#refiner.enable_model_cpu_offload()
|
|
|
79 |
#refiner.to(device)
|
80 |
#refiner = torch.compile(refiner)
|
81 |
#refiner.scheduler = EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config, beta_schedule="scaled_linear")
|
82 |
+
#refiner.scheduler = EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config)
|
83 |
+
|
84 |
|
85 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint, add_prefix_space=False, device_map='balanced')
|
86 |
tokenizer.tokenizer_legacy=False
|