Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
-
|
5 |
#import tensorrt as trt
|
6 |
-
|
7 |
import random
|
8 |
import torch
|
9 |
from diffusers import StableDiffusion3Pipeline, AutoencoderKL, StableDiffusionXLImg2ImgPipeline, EulerAncestralDiscreteScheduler
|
@@ -30,7 +28,6 @@ torch.backends.cudnn.deterministic = False
|
|
30 |
#torch.backends.cudnn.benchmark = False
|
31 |
torch.backends.cuda.preferred_blas_library="cublas"
|
32 |
#torch.backends.cuda.preferred_linalg_library="cusolver"
|
33 |
-
|
34 |
torch.set_float32_matmul_precision("highest")
|
35 |
|
36 |
hftoken = os.getenv("HF_AUTH_TOKEN")
|
@@ -81,7 +78,6 @@ refiner.scheduler=EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.
|
|
81 |
#refiner.scheduler = EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config, beta_schedule="scaled_linear")
|
82 |
#refiner.scheduler = EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config)
|
83 |
|
84 |
-
|
85 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint, add_prefix_space=False, device_map='balanced')
|
86 |
tokenizer.tokenizer_legacy=False
|
87 |
model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map='balanced')
|
@@ -190,8 +186,8 @@ def infer(
|
|
190 |
#sd_image_b = pipe.vae.encode(sd_image_a.to(torch.bfloat16)).latent_dist.sample().mul_(0.18215)
|
191 |
print("-- using latent file --")
|
192 |
print('-- generating image --')
|
193 |
-
with torch.no_grad():
|
194 |
-
|
195 |
prompt=enhanced_prompt, # This conversion is fine
|
196 |
negative_prompt=negative_prompt,
|
197 |
guidance_scale=guidance_scale,
|
@@ -200,11 +196,11 @@ def infer(
|
|
200 |
height=height,
|
201 |
latents=sd_image_a,
|
202 |
generator=generator
|
203 |
-
|
204 |
else:
|
205 |
print('-- generating image --')
|
206 |
-
with torch.no_grad():
|
207 |
-
|
208 |
prompt=enhanced_prompt, # This conversion is fine
|
209 |
prompt_2=enhanced_prompt_2,
|
210 |
prompt_3=prompt,
|
@@ -215,7 +211,7 @@ def infer(
|
|
215 |
height=height,
|
216 |
# latents=None,
|
217 |
generator=generator,
|
218 |
-
|
219 |
print('-- got image --')
|
220 |
image_path = f"sd35m_{seed}.png"
|
221 |
sd_image.save(image_path,optimize=False,compress_level=0)
|
@@ -223,8 +219,8 @@ def infer(
|
|
223 |
# Convert the generated image to a tensor
|
224 |
generated_image_tensor = torch.tensor([np.array(sd_image).transpose(2, 0, 1)]).to('cuda') / 255.0
|
225 |
# Encode the generated image into latents
|
226 |
-
with torch.no_grad():
|
227 |
-
|
228 |
latent_path = f"sd35m_{seed}.pt"
|
229 |
# Save the latents to a .pt file
|
230 |
torch.save(generated_latents, latent_path)
|
@@ -252,9 +248,9 @@ examples = [
|
|
252 |
css = """
|
253 |
#col-container {
|
254 |
margin: 0 auto;
|
255 |
-
max-width:
|
256 |
}
|
257 |
-
body
|
258 |
background-color: blue;
|
259 |
}
|
260 |
"""
|
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
|
|
4 |
#import tensorrt as trt
|
|
|
5 |
import random
|
6 |
import torch
|
7 |
from diffusers import StableDiffusion3Pipeline, AutoencoderKL, StableDiffusionXLImg2ImgPipeline, EulerAncestralDiscreteScheduler
|
|
|
28 |
#torch.backends.cudnn.benchmark = False
|
29 |
torch.backends.cuda.preferred_blas_library="cublas"
|
30 |
#torch.backends.cuda.preferred_linalg_library="cusolver"
|
|
|
31 |
torch.set_float32_matmul_precision("highest")
|
32 |
|
33 |
hftoken = os.getenv("HF_AUTH_TOKEN")
|
|
|
78 |
#refiner.scheduler = EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config, beta_schedule="scaled_linear")
|
79 |
#refiner.scheduler = EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config)
|
80 |
|
|
|
81 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint, add_prefix_space=False, device_map='balanced')
|
82 |
tokenizer.tokenizer_legacy=False
|
83 |
model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map='balanced')
|
|
|
186 |
#sd_image_b = pipe.vae.encode(sd_image_a.to(torch.bfloat16)).latent_dist.sample().mul_(0.18215)
|
187 |
print("-- using latent file --")
|
188 |
print('-- generating image --')
|
189 |
+
#with torch.no_grad():
|
190 |
+
sd_image = pipe(
|
191 |
prompt=enhanced_prompt, # This conversion is fine
|
192 |
negative_prompt=negative_prompt,
|
193 |
guidance_scale=guidance_scale,
|
|
|
196 |
height=height,
|
197 |
latents=sd_image_a,
|
198 |
generator=generator
|
199 |
+
).images[0]
|
200 |
else:
|
201 |
print('-- generating image --')
|
202 |
+
#with torch.no_grad():
|
203 |
+
sd_image = pipe(
|
204 |
prompt=enhanced_prompt, # This conversion is fine
|
205 |
prompt_2=enhanced_prompt_2,
|
206 |
prompt_3=prompt,
|
|
|
211 |
height=height,
|
212 |
# latents=None,
|
213 |
generator=generator,
|
214 |
+
).images[0]
|
215 |
print('-- got image --')
|
216 |
image_path = f"sd35m_{seed}.png"
|
217 |
sd_image.save(image_path,optimize=False,compress_level=0)
|
|
|
219 |
# Convert the generated image to a tensor
|
220 |
generated_image_tensor = torch.tensor([np.array(sd_image).transpose(2, 0, 1)]).to('cuda') / 255.0
|
221 |
# Encode the generated image into latents
|
222 |
+
#with torch.no_grad():
|
223 |
+
generated_latents = pipe.vae.encode(generated_image_tensor.to(torch.bfloat16)).latent_dist.sample().mul_(0.18215)
|
224 |
latent_path = f"sd35m_{seed}.pt"
|
225 |
# Save the latents to a .pt file
|
226 |
torch.save(generated_latents, latent_path)
|
|
|
248 |
css = """
|
249 |
#col-container {
|
250 |
margin: 0 auto;
|
251 |
+
max-width: 640px;
|
252 |
}
|
253 |
+
body{
|
254 |
background-color: blue;
|
255 |
}
|
256 |
"""
|