File size: 4,569 Bytes
43b1393
f8c68bd
 
2116a66
f8c68bd
2116a66
f8c68bd
 
 
fd3cb72
c477f1c
fd3cb72
5d4f9ed
2116a66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd3cb72
05e9cff
fd3cb72
 
 
05e9cff
43b1393
fd3cb72
 
 
 
 
 
 
41cbe95
43b1393
fd3cb72
 
 
 
 
 
 
41cbe95
fd3cb72
43b1393
5d4f9ed
fd3cb72
 
 
5d4f9ed
 
fd3cb72
5d4f9ed
fd3cb72
43b1393
 
fd3cb72
 
 
 
 
 
 
 
 
 
 
 
2ae2cbd
05e9cff
fd3cb72
43b1393
 
 
eabb9c4
fd3cb72
 
 
 
5d4f9ed
fd3cb72
5d4f9ed
2ae2cbd
fd3cb72
 
 
 
2ae2cbd
05e9cff
fd3cb72
5d4f9ed
 
 
 
fd3cb72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68d5b48
 
fd3cb72
68d5b48
 
fd3cb72
8b884e6
fd3cb72
c0cb430
fd3cb72
a2718c9
5d4f9ed
 
fd3cb72
5d4f9ed
 
 
 
 
 
 
68d5b48
8e0a53d
 
 
43b1393
5d4f9ed
 
79cd26d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import os
import PIL
import tensorflow as tf
import gdown
import zipfile
import pathlib
from tensorflow import keras
from tensorflow.keras.models import Sequential
from tensorflow.keras import layers, callbacks

# Define the Google Drive shareable link
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
file_id = gdrive_url.split('/d/')[1].split('/view')[0]
direct_download_url = f'https://drive.google.com/uc?id={file_id}'

# Define the local filename to save the ZIP file
local_zip_file = 'file.zip'

# Download the ZIP file
gdown.download(direct_download_url, local_zip_file, quiet=False)

# Directory to extract files
extracted_path = 'extracted_files'

# Verify if the downloaded file is a ZIP file and extract it
try:
    with zipfile.ZipFile(local_zip_file, 'r') as zip_ref:
        zip_ref.extractall(extracted_path)
    print("Extraction successful!")
except zipfile.BadZipFile:
    print("Error: The downloaded file is not a valid ZIP file.")

# Optionally, you can delete the ZIP file after extraction
os.remove(local_zip_file)

# Convert the extracted directory path to a pathlib.Path object
data_dir = pathlib.Path(extracted_path) / 'Pest_Dataset'

# Load and preprocess data
img_height, img_width = 180, 180
batch_size = 32

train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size
)

val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size
)

# Class names
class_names = train_ds.class_names

# Data augmentation
data_augmentation = keras.Sequential([
    layers.RandomFlip("horizontal"),
    layers.RandomRotation(0.1),
    layers.RandomZoom(0.1),
])

# Model
num_classes = len(class_names)
model = Sequential([
    data_augmentation,
    layers.Rescaling(1./255),
    layers.Conv2D(16, 3, padding='same', activation='relu'),
    layers.MaxPooling2D(),
    layers.Conv2D(32, 3, padding='same', activation='relu'),
    layers.MaxPooling2D(),
    layers.Conv2D(64, 3, padding='same', activation='relu'),
    layers.MaxPooling2D(),
    layers.Dropout(0.2),
    layers.Flatten(),
    layers.Dense(128, activation='relu'),
    layers.Dense(num_classes, name="outputs")
])

# Compile the model
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

# Early stopping callback
early_stopping = callbacks.EarlyStopping(
    monitor='val_loss', patience=5, restore_best_weights=True
)

# Train the model
epochs = 50
history = model.fit(
    train_ds,
    validation_data=val_ds,
    epochs=epochs,
    callbacks=[early_stopping]
)

# Evaluate the model on validation data
results = model.evaluate(val_ds, verbose=0)
print("Validation Loss: {:.5f}".format(results[0]))
print("Validation Accuracy: {:.2f}%".format(results[1] * 100))

# Plot training history
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.plot(history.history['loss'], label='Training Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.title('Training and Validation Loss')

plt.subplot(1, 2, 2)
plt.plot(history.history['accuracy'], label='Training Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.title('Training and Validation Accuracy')
plt.show()

# Prediction function
def predict_image(img):
    img = np.array(img)
    img_resized = tf.image.resize(img, (img_height, img_width))
    img_4d = tf.expand_dims(img_resized, axis=0)
    prediction = model.predict(img_4d)[0]
    return {class_names[i]: float(prediction[i]) for i in range(num_classes)}

# Interface
image = gr.Image()
label = gr.Label(num_top_classes=num_classes)

custom_css = """
body {
    background-image: url('extracted_files/Pest_Dataset/bees/bees (444).jpg');
    background-size: cover;
    background-repeat: no-repeat;
    background-attachment: fixed;
    color: white;
}
"""

gr.Interface(
    fn=predict_image,
    inputs=image,
    outputs=label,
    title="Pest Classification",
    description="Upload an image of a pest to classify it into one of the predefined categories.",
    css=custom_css
).launch(debug=True)