Spaces:
Runtime error
Runtime error
NORLIE JHON MALAGDAO
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,16 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
-
import
|
| 3 |
-
import gdown
|
| 4 |
-
import pathlib
|
| 5 |
import tensorflow as tf
|
| 6 |
-
from tensorflow.keras.preprocessing import image_dataset_from_directory
|
| 7 |
|
|
|
|
| 8 |
from tensorflow.keras import layers
|
| 9 |
from tensorflow.keras.models import Sequential
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
import
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
# Define the Google Drive shareable link
|
| 16 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
|
@@ -40,127 +44,127 @@ except zipfile.BadZipFile:
|
|
| 40 |
os.remove(local_zip_file)
|
| 41 |
|
| 42 |
# Convert the extracted directory path to a pathlib.Path object
|
| 43 |
-
data_dir = pathlib.Path(
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
# Set image dimensions and batch size
|
| 48 |
-
img_height, img_width = 180, 180
|
| 49 |
-
batch_size = 32
|
| 50 |
-
|
| 51 |
-
# Create training and validation datasets
|
| 52 |
-
train_ds = image_dataset_from_directory(
|
| 53 |
-
data_dir,
|
| 54 |
-
validation_split=0.2,
|
| 55 |
-
subset="training",
|
| 56 |
-
seed=123,
|
| 57 |
-
image_size=(img_height, img_width),
|
| 58 |
-
batch_size=batch_size
|
| 59 |
-
)
|
| 60 |
-
|
| 61 |
-
val_ds = image_dataset_from_directory(
|
| 62 |
-
data_dir,
|
| 63 |
-
validation_split=0.2,
|
| 64 |
-
subset="validation",
|
| 65 |
-
seed=123,
|
| 66 |
-
image_size=(img_height, img_width),
|
| 67 |
-
batch_size=batch_size
|
| 68 |
-
)
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
-
data_augmentation = tf.keras.Sequential(
|
| 79 |
-
[
|
| 80 |
-
layers.RandomFlip("horizontal", input_shape=(img_height, img_width, 3)),
|
| 81 |
-
layers.RandomRotation(0.2),
|
| 82 |
-
layers.RandomZoom(0.2),
|
| 83 |
-
layers.RandomContrast(0.2),
|
| 84 |
-
layers.RandomBrightness(0.2),
|
| 85 |
-
]
|
| 86 |
-
)
|
| 87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
-
num_classes = len(class_names)
|
| 92 |
-
model = Sequential()
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
|
| 97 |
-
model.add(Conv2D(32, 3, padding='same', activation='relu'))
|
| 98 |
-
model.add(BatchNormalization())
|
| 99 |
-
model.add(MaxPooling2D())
|
| 100 |
|
| 101 |
-
|
| 102 |
-
model.add(BatchNormalization())
|
| 103 |
-
model.add(MaxPooling2D())
|
| 104 |
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
-
model.add(Conv2D(256, 3, padding='same', activation='relu'))
|
| 110 |
-
model.add(BatchNormalization())
|
| 111 |
-
model.add(MaxPooling2D())
|
| 112 |
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
-
model.add(Dropout(0.5))
|
| 118 |
-
model.add(Flatten())
|
| 119 |
|
| 120 |
-
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
-
model.add(Dense(num_classes, activation='softmax', name="outputs"))
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
metrics=['accuracy'])
|
| 128 |
|
| 129 |
model.summary()
|
| 130 |
|
| 131 |
|
| 132 |
-
|
| 133 |
-
# Implement early stopping
|
| 134 |
-
early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
|
| 135 |
-
|
| 136 |
-
# Learning rate scheduler
|
| 137 |
-
def scheduler(epoch, lr):
|
| 138 |
-
if epoch < 10:
|
| 139 |
-
return lr
|
| 140 |
-
else:
|
| 141 |
-
return lr * tf.math.exp(-0.1)
|
| 142 |
-
|
| 143 |
-
lr_scheduler = LearningRateScheduler(scheduler)
|
| 144 |
-
|
| 145 |
-
# Train the model
|
| 146 |
-
epochs = 30
|
| 147 |
history = model.fit(
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
callbacks=[early_stopping, lr_scheduler]
|
| 152 |
)
|
| 153 |
|
| 154 |
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
def predict_image(img):
|
| 157 |
img = np.array(img)
|
| 158 |
-
img_resized = tf.image.resize(img, (
|
| 159 |
img_4d = tf.expand_dims(img_resized, axis=0)
|
| 160 |
prediction = model.predict(img_4d)[0]
|
| 161 |
-
|
| 162 |
-
predicted_label = class_names[predicted_class]
|
| 163 |
-
return {predicted_label: f"{float(prediction[predicted_class]):.2f}"}
|
| 164 |
|
| 165 |
image = gr.Image()
|
| 166 |
label = gr.Label(num_top_classes=1)
|
|
@@ -184,5 +188,3 @@ gr.Interface(
|
|
| 184 |
description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
|
| 185 |
css=custom_css
|
| 186 |
).launch(debug=True)
|
| 187 |
-
|
| 188 |
-
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import numpy as np
|
| 4 |
import os
|
| 5 |
+
import PIL
|
|
|
|
|
|
|
| 6 |
import tensorflow as tf
|
|
|
|
| 7 |
|
| 8 |
+
from tensorflow import keras
|
| 9 |
from tensorflow.keras import layers
|
| 10 |
from tensorflow.keras.models import Sequential
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
from PIL import Image
|
| 14 |
+
import gdown
|
| 15 |
+
import zipfile
|
| 16 |
+
|
| 17 |
+
import pathlib
|
| 18 |
|
| 19 |
# Define the Google Drive shareable link
|
| 20 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
|
|
|
| 44 |
os.remove(local_zip_file)
|
| 45 |
|
| 46 |
# Convert the extracted directory path to a pathlib.Path object
|
| 47 |
+
data_dir = pathlib.Path(extracted_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
+
# Print the directory structure to debug
|
| 50 |
+
for root, dirs, files in os.walk(extracted_path):
|
| 51 |
+
level = root.replace(extracted_path, '').count(os.sep)
|
| 52 |
+
indent = ' ' * 4 * (level)
|
| 53 |
+
print(f"{indent}{os.path.basename(root)}/")
|
| 54 |
+
subindent = ' ' * 4 * (level + 1)
|
| 55 |
+
for f in files:
|
| 56 |
+
print(f"{subindent}{f}")
|
| 57 |
|
| 58 |
+
import pathlib
|
| 59 |
+
# Path to the dataset directory
|
| 60 |
+
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
| 61 |
+
data_dir = pathlib.Path(data_dir)
|
| 62 |
|
| 63 |
|
| 64 |
+
bees = list(data_dir.glob('bees/*'))
|
| 65 |
+
print(bees[0])
|
| 66 |
+
PIL.Image.open(str(bees[0]))
|
| 67 |
|
| 68 |
|
| 69 |
+
bees = list(data_dir.glob('bees/*'))
|
| 70 |
+
print(bees[0])
|
| 71 |
+
PIL.Image.open(str(bees[0]))
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
img_height,img_width=180,180
|
| 75 |
+
batch_size=32
|
| 76 |
+
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
| 77 |
+
data_dir,
|
| 78 |
+
validation_split=0.2,
|
| 79 |
+
subset="training",
|
| 80 |
+
seed=123,
|
| 81 |
+
image_size=(img_height, img_width),
|
| 82 |
+
batch_size=batch_size)
|
| 83 |
|
| 84 |
|
| 85 |
+
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
| 86 |
+
data_dir,
|
| 87 |
+
validation_split=0.2,
|
| 88 |
+
subset="validation",
|
| 89 |
+
seed=123,
|
| 90 |
+
image_size=(img_height, img_width),
|
| 91 |
+
batch_size=batch_size)
|
| 92 |
|
|
|
|
|
|
|
| 93 |
|
| 94 |
+
class_names = train_ds.class_names
|
| 95 |
+
print(class_names)
|
| 96 |
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
+
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
| 99 |
|
| 100 |
+
plt.figure(figsize=(10, 10))
|
| 101 |
+
for images, labels in train_ds.take(1):
|
| 102 |
+
for i in range(9):
|
| 103 |
+
ax = plt.subplot(3, 3, i + 1)
|
| 104 |
+
plt.imshow(images[i].numpy().astype("uint8"))
|
| 105 |
+
plt.title(class_names[labels[i]])
|
| 106 |
+
plt.axis("off")
|
| 107 |
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
+
data_augmentation = keras.Sequential(
|
| 110 |
+
[
|
| 111 |
+
layers.RandomFlip("horizontal", input_shape=(img_height, img_width, 3)),
|
| 112 |
+
layers.RandomRotation(0.1),
|
| 113 |
+
layers.RandomZoom(0.1),
|
| 114 |
+
]
|
| 115 |
+
)
|
| 116 |
|
|
|
|
|
|
|
| 117 |
|
| 118 |
+
plt.figure(figsize=(10, 10))
|
| 119 |
+
for images, _ in train_ds.take(1):
|
| 120 |
+
for i in range(9):
|
| 121 |
+
augmented_images = data_augmentation(images)
|
| 122 |
+
ax = plt.subplot(3, 3, i + 1)
|
| 123 |
+
plt.imshow(augmented_images[0].numpy().astype("uint8"))
|
| 124 |
+
plt.axis("off")
|
| 125 |
|
|
|
|
| 126 |
|
| 127 |
+
num_classes = len(class_names)
|
| 128 |
+
model = Sequential([
|
| 129 |
+
data_augmentation,
|
| 130 |
+
layers.Rescaling(1./255),
|
| 131 |
+
layers.Conv2D(16, 3, padding='same', activation='relu'),
|
| 132 |
+
layers.MaxPooling2D(),
|
| 133 |
+
layers.Conv2D(32, 3, padding='same', activation='relu'),
|
| 134 |
+
layers.MaxPooling2D(),
|
| 135 |
+
layers.Conv2D(64, 3, padding='same', activation='relu'),
|
| 136 |
+
layers.MaxPooling2D(),
|
| 137 |
+
layers.Dropout(0.2),
|
| 138 |
+
layers.Flatten(),
|
| 139 |
+
layers.Dense(128, activation='relu'),
|
| 140 |
+
layers.Dense(num_classes, activation='softmax', name="outputs") # Use softmax here
|
| 141 |
+
])
|
| 142 |
+
|
| 143 |
+
model.compile(optimizer='adam',
|
| 144 |
+
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False), # Change from_logits to False
|
| 145 |
metrics=['accuracy'])
|
| 146 |
|
| 147 |
model.summary()
|
| 148 |
|
| 149 |
|
| 150 |
+
epochs = 15
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
history = model.fit(
|
| 152 |
+
train_ds,
|
| 153 |
+
validation_data=val_ds,
|
| 154 |
+
epochs=epochs
|
|
|
|
| 155 |
)
|
| 156 |
|
| 157 |
|
| 158 |
+
import gradio as gr
|
| 159 |
+
import numpy as np
|
| 160 |
+
import tensorflow as tf
|
| 161 |
|
| 162 |
def predict_image(img):
|
| 163 |
img = np.array(img)
|
| 164 |
+
img_resized = tf.image.resize(img, (180, 180))
|
| 165 |
img_4d = tf.expand_dims(img_resized, axis=0)
|
| 166 |
prediction = model.predict(img_4d)[0]
|
| 167 |
+
return {class_names[i]: float(prediction[i]) for i in range(len(class_names))}
|
|
|
|
|
|
|
| 168 |
|
| 169 |
image = gr.Image()
|
| 170 |
label = gr.Label(num_top_classes=1)
|
|
|
|
| 188 |
description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
|
| 189 |
css=custom_css
|
| 190 |
).launch(debug=True)
|
|
|
|
|
|