Spaces:
Runtime error
Runtime error
NORLIE JHON MALAGDAO
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,20 @@
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
import gdown
|
4 |
-
import pathlib
|
5 |
import tensorflow as tf
|
6 |
-
from tensorflow.keras.preprocessing import image_dataset_from_directory
|
7 |
|
|
|
8 |
from tensorflow.keras import layers
|
9 |
from tensorflow.keras.models import Sequential
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
import
|
|
|
|
|
|
|
14 |
|
15 |
# Define the Google Drive shareable link
|
16 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
@@ -40,127 +44,127 @@ except zipfile.BadZipFile:
|
|
40 |
os.remove(local_zip_file)
|
41 |
|
42 |
# Convert the extracted directory path to a pathlib.Path object
|
43 |
-
data_dir = pathlib.Path(
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
# Set image dimensions and batch size
|
48 |
-
img_height, img_width = 180, 180
|
49 |
-
batch_size = 32
|
50 |
-
|
51 |
-
# Create training and validation datasets
|
52 |
-
train_ds = image_dataset_from_directory(
|
53 |
-
data_dir,
|
54 |
-
validation_split=0.2,
|
55 |
-
subset="training",
|
56 |
-
seed=123,
|
57 |
-
image_size=(img_height, img_width),
|
58 |
-
batch_size=batch_size
|
59 |
-
)
|
60 |
-
|
61 |
-
val_ds = image_dataset_from_directory(
|
62 |
-
data_dir,
|
63 |
-
validation_split=0.2,
|
64 |
-
subset="validation",
|
65 |
-
seed=123,
|
66 |
-
image_size=(img_height, img_width),
|
67 |
-
batch_size=batch_size
|
68 |
-
)
|
69 |
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
|
|
|
|
|
|
|
|
73 |
|
74 |
|
|
|
|
|
|
|
75 |
|
76 |
|
|
|
|
|
|
|
77 |
|
78 |
-
data_augmentation = tf.keras.Sequential(
|
79 |
-
[
|
80 |
-
layers.RandomFlip("horizontal", input_shape=(img_height, img_width, 3)),
|
81 |
-
layers.RandomRotation(0.2),
|
82 |
-
layers.RandomZoom(0.2),
|
83 |
-
layers.RandomContrast(0.2),
|
84 |
-
layers.RandomBrightness(0.2),
|
85 |
-
]
|
86 |
-
)
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
-
num_classes = len(class_names)
|
92 |
-
model = Sequential()
|
93 |
|
94 |
-
|
95 |
-
|
96 |
|
97 |
-
model.add(Conv2D(32, 3, padding='same', activation='relu'))
|
98 |
-
model.add(BatchNormalization())
|
99 |
-
model.add(MaxPooling2D())
|
100 |
|
101 |
-
|
102 |
-
model.add(BatchNormalization())
|
103 |
-
model.add(MaxPooling2D())
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
108 |
|
109 |
-
model.add(Conv2D(256, 3, padding='same', activation='relu'))
|
110 |
-
model.add(BatchNormalization())
|
111 |
-
model.add(MaxPooling2D())
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
116 |
|
117 |
-
model.add(Dropout(0.5))
|
118 |
-
model.add(Flatten())
|
119 |
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
-
model.add(Dense(num_classes, activation='softmax', name="outputs"))
|
124 |
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
metrics=['accuracy'])
|
128 |
|
129 |
model.summary()
|
130 |
|
131 |
|
132 |
-
|
133 |
-
# Implement early stopping
|
134 |
-
early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
|
135 |
-
|
136 |
-
# Learning rate scheduler
|
137 |
-
def scheduler(epoch, lr):
|
138 |
-
if epoch < 10:
|
139 |
-
return lr
|
140 |
-
else:
|
141 |
-
return lr * tf.math.exp(-0.1)
|
142 |
-
|
143 |
-
lr_scheduler = LearningRateScheduler(scheduler)
|
144 |
-
|
145 |
-
# Train the model
|
146 |
-
epochs = 30
|
147 |
history = model.fit(
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
callbacks=[early_stopping, lr_scheduler]
|
152 |
)
|
153 |
|
154 |
|
|
|
|
|
|
|
155 |
|
156 |
def predict_image(img):
|
157 |
img = np.array(img)
|
158 |
-
img_resized = tf.image.resize(img, (
|
159 |
img_4d = tf.expand_dims(img_resized, axis=0)
|
160 |
prediction = model.predict(img_4d)[0]
|
161 |
-
|
162 |
-
predicted_label = class_names[predicted_class]
|
163 |
-
return {predicted_label: f"{float(prediction[predicted_class]):.2f}"}
|
164 |
|
165 |
image = gr.Image()
|
166 |
label = gr.Label(num_top_classes=1)
|
@@ -184,5 +188,3 @@ gr.Interface(
|
|
184 |
description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
|
185 |
css=custom_css
|
186 |
).launch(debug=True)
|
187 |
-
|
188 |
-
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import numpy as np
|
4 |
import os
|
5 |
+
import PIL
|
|
|
|
|
6 |
import tensorflow as tf
|
|
|
7 |
|
8 |
+
from tensorflow import keras
|
9 |
from tensorflow.keras import layers
|
10 |
from tensorflow.keras.models import Sequential
|
11 |
+
|
12 |
+
|
13 |
+
from PIL import Image
|
14 |
+
import gdown
|
15 |
+
import zipfile
|
16 |
+
|
17 |
+
import pathlib
|
18 |
|
19 |
# Define the Google Drive shareable link
|
20 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
|
|
44 |
os.remove(local_zip_file)
|
45 |
|
46 |
# Convert the extracted directory path to a pathlib.Path object
|
47 |
+
data_dir = pathlib.Path(extracted_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
# Print the directory structure to debug
|
50 |
+
for root, dirs, files in os.walk(extracted_path):
|
51 |
+
level = root.replace(extracted_path, '').count(os.sep)
|
52 |
+
indent = ' ' * 4 * (level)
|
53 |
+
print(f"{indent}{os.path.basename(root)}/")
|
54 |
+
subindent = ' ' * 4 * (level + 1)
|
55 |
+
for f in files:
|
56 |
+
print(f"{subindent}{f}")
|
57 |
|
58 |
+
import pathlib
|
59 |
+
# Path to the dataset directory
|
60 |
+
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
61 |
+
data_dir = pathlib.Path(data_dir)
|
62 |
|
63 |
|
64 |
+
bees = list(data_dir.glob('bees/*'))
|
65 |
+
print(bees[0])
|
66 |
+
PIL.Image.open(str(bees[0]))
|
67 |
|
68 |
|
69 |
+
bees = list(data_dir.glob('bees/*'))
|
70 |
+
print(bees[0])
|
71 |
+
PIL.Image.open(str(bees[0]))
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
img_height,img_width=180,180
|
75 |
+
batch_size=32
|
76 |
+
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
77 |
+
data_dir,
|
78 |
+
validation_split=0.2,
|
79 |
+
subset="training",
|
80 |
+
seed=123,
|
81 |
+
image_size=(img_height, img_width),
|
82 |
+
batch_size=batch_size)
|
83 |
|
84 |
|
85 |
+
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
86 |
+
data_dir,
|
87 |
+
validation_split=0.2,
|
88 |
+
subset="validation",
|
89 |
+
seed=123,
|
90 |
+
image_size=(img_height, img_width),
|
91 |
+
batch_size=batch_size)
|
92 |
|
|
|
|
|
93 |
|
94 |
+
class_names = train_ds.class_names
|
95 |
+
print(class_names)
|
96 |
|
|
|
|
|
|
|
97 |
|
98 |
+
import matplotlib.pyplot as plt
|
|
|
|
|
99 |
|
100 |
+
plt.figure(figsize=(10, 10))
|
101 |
+
for images, labels in train_ds.take(1):
|
102 |
+
for i in range(9):
|
103 |
+
ax = plt.subplot(3, 3, i + 1)
|
104 |
+
plt.imshow(images[i].numpy().astype("uint8"))
|
105 |
+
plt.title(class_names[labels[i]])
|
106 |
+
plt.axis("off")
|
107 |
|
|
|
|
|
|
|
108 |
|
109 |
+
data_augmentation = keras.Sequential(
|
110 |
+
[
|
111 |
+
layers.RandomFlip("horizontal", input_shape=(img_height, img_width, 3)),
|
112 |
+
layers.RandomRotation(0.1),
|
113 |
+
layers.RandomZoom(0.1),
|
114 |
+
]
|
115 |
+
)
|
116 |
|
|
|
|
|
117 |
|
118 |
+
plt.figure(figsize=(10, 10))
|
119 |
+
for images, _ in train_ds.take(1):
|
120 |
+
for i in range(9):
|
121 |
+
augmented_images = data_augmentation(images)
|
122 |
+
ax = plt.subplot(3, 3, i + 1)
|
123 |
+
plt.imshow(augmented_images[0].numpy().astype("uint8"))
|
124 |
+
plt.axis("off")
|
125 |
|
|
|
126 |
|
127 |
+
num_classes = len(class_names)
|
128 |
+
model = Sequential([
|
129 |
+
data_augmentation,
|
130 |
+
layers.Rescaling(1./255),
|
131 |
+
layers.Conv2D(16, 3, padding='same', activation='relu'),
|
132 |
+
layers.MaxPooling2D(),
|
133 |
+
layers.Conv2D(32, 3, padding='same', activation='relu'),
|
134 |
+
layers.MaxPooling2D(),
|
135 |
+
layers.Conv2D(64, 3, padding='same', activation='relu'),
|
136 |
+
layers.MaxPooling2D(),
|
137 |
+
layers.Dropout(0.2),
|
138 |
+
layers.Flatten(),
|
139 |
+
layers.Dense(128, activation='relu'),
|
140 |
+
layers.Dense(num_classes, activation='softmax', name="outputs") # Use softmax here
|
141 |
+
])
|
142 |
+
|
143 |
+
model.compile(optimizer='adam',
|
144 |
+
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False), # Change from_logits to False
|
145 |
metrics=['accuracy'])
|
146 |
|
147 |
model.summary()
|
148 |
|
149 |
|
150 |
+
epochs = 15
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
history = model.fit(
|
152 |
+
train_ds,
|
153 |
+
validation_data=val_ds,
|
154 |
+
epochs=epochs
|
|
|
155 |
)
|
156 |
|
157 |
|
158 |
+
import gradio as gr
|
159 |
+
import numpy as np
|
160 |
+
import tensorflow as tf
|
161 |
|
162 |
def predict_image(img):
|
163 |
img = np.array(img)
|
164 |
+
img_resized = tf.image.resize(img, (180, 180))
|
165 |
img_4d = tf.expand_dims(img_resized, axis=0)
|
166 |
prediction = model.predict(img_4d)[0]
|
167 |
+
return {class_names[i]: float(prediction[i]) for i in range(len(class_names))}
|
|
|
|
|
168 |
|
169 |
image = gr.Image()
|
170 |
label = gr.Label(num_top_classes=1)
|
|
|
188 |
description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
|
189 |
css=custom_css
|
190 |
).launch(debug=True)
|
|
|
|