Spaces:
Runtime error
Runtime error
NORLIE JHON MALAGDAO
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -3,10 +3,12 @@ import zipfile
|
|
3 |
import gdown
|
4 |
import pathlib
|
5 |
import tensorflow as tf
|
6 |
-
from tensorflow import
|
|
|
7 |
from tensorflow.keras import layers
|
8 |
from tensorflow.keras.models import Sequential
|
9 |
-
|
|
|
10 |
import gradio as gr
|
11 |
import numpy as np
|
12 |
|
@@ -40,21 +42,14 @@ os.remove(local_zip_file)
|
|
40 |
# Convert the extracted directory path to a pathlib.Path object
|
41 |
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
42 |
|
43 |
-
|
44 |
-
for root, dirs, files in os.walk(extracted_path):
|
45 |
-
level = root.replace(extracted_path, '').count(os.sep)
|
46 |
-
indent = ' ' * 4 * (level)
|
47 |
-
print(f"{indent}{os.path.basename(root)}/")
|
48 |
-
subindent = ' ' * 4 * (level + 1)
|
49 |
-
for f in files:
|
50 |
-
print(f"{subindent}{f}")
|
51 |
|
52 |
# Set image dimensions and batch size
|
53 |
img_height, img_width = 180, 180
|
54 |
batch_size = 32
|
55 |
|
56 |
# Create training and validation datasets
|
57 |
-
train_ds =
|
58 |
data_dir,
|
59 |
validation_split=0.2,
|
60 |
subset="training",
|
@@ -63,7 +58,7 @@ train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
|
63 |
batch_size=batch_size
|
64 |
)
|
65 |
|
66 |
-
val_ds =
|
67 |
data_dir,
|
68 |
validation_split=0.2,
|
69 |
subset="validation",
|
@@ -75,17 +70,12 @@ val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
|
75 |
class_names = train_ds.class_names
|
76 |
print(class_names)
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
plt.title(class_names[labels[i]])
|
85 |
-
plt.axis("off")
|
86 |
-
|
87 |
-
# Enhanced data augmentation
|
88 |
-
data_augmentation = keras.Sequential(
|
89 |
[
|
90 |
layers.RandomFlip("horizontal", input_shape=(img_height, img_width, 3)),
|
91 |
layers.RandomRotation(0.2),
|
@@ -95,59 +85,52 @@ data_augmentation = keras.Sequential(
|
|
95 |
]
|
96 |
)
|
97 |
|
98 |
-
# Display augmented images
|
99 |
-
plt.figure(figsize=(10, 10))
|
100 |
-
for images, _ in train_ds.take(1):
|
101 |
-
for i in range(9):
|
102 |
-
augmented_images = data_augmentation(images)
|
103 |
-
ax = plt.subplot(3, 3, i + 1)
|
104 |
-
plt.imshow(augmented_images[0].numpy().astype("uint8"))
|
105 |
-
plt.axis("off")
|
106 |
|
107 |
-
|
|
|
108 |
num_classes = len(class_names)
|
109 |
model = Sequential()
|
110 |
|
111 |
model.add(data_augmentation)
|
112 |
-
model.add(
|
113 |
|
114 |
-
model.add(
|
115 |
-
model.add(
|
116 |
-
model.add(
|
117 |
|
118 |
-
model.add(
|
119 |
-
model.add(
|
120 |
-
model.add(
|
121 |
|
122 |
-
model.add(
|
123 |
-
model.add(
|
124 |
-
model.add(
|
125 |
|
126 |
-
model.add(
|
127 |
-
model.add(
|
128 |
-
model.add(
|
129 |
|
130 |
-
model.add(
|
131 |
-
model.add(
|
132 |
-
model.add(
|
133 |
|
134 |
-
model.add(
|
135 |
-
model.add(
|
136 |
|
137 |
-
model.add(
|
138 |
-
model.add(
|
139 |
|
140 |
-
model.add(
|
141 |
|
142 |
-
model.compile(optimizer=keras.optimizers.Adam(learning_rate=1e-4),
|
143 |
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
|
144 |
metrics=['accuracy'])
|
145 |
|
146 |
model.summary()
|
147 |
|
148 |
-
# Implement early stopping
|
149 |
-
from tensorflow.keras.callbacks import EarlyStopping
|
150 |
|
|
|
|
|
151 |
early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
|
152 |
|
153 |
# Learning rate scheduler
|
@@ -157,7 +140,7 @@ def scheduler(epoch, lr):
|
|
157 |
else:
|
158 |
return lr * tf.math.exp(-0.1)
|
159 |
|
160 |
-
lr_scheduler =
|
161 |
|
162 |
# Train the model
|
163 |
epochs = 30
|
@@ -168,17 +151,17 @@ history = model.fit(
|
|
168 |
callbacks=[early_stopping, lr_scheduler]
|
169 |
)
|
170 |
|
171 |
-
|
|
|
172 |
def predict_image(img):
|
173 |
img = np.array(img)
|
174 |
-
img_resized = tf.image.resize(img, (
|
175 |
img_4d = tf.expand_dims(img_resized, axis=0)
|
176 |
prediction = model.predict(img_4d)[0]
|
177 |
predicted_class = np.argmax(prediction)
|
178 |
predicted_label = class_names[predicted_class]
|
179 |
return {predicted_label: f"{float(prediction[predicted_class]):.2f}"}
|
180 |
|
181 |
-
# Set up Gradio interface
|
182 |
image = gr.Image()
|
183 |
label = gr.Label(num_top_classes=1)
|
184 |
|
@@ -201,3 +184,5 @@ gr.Interface(
|
|
201 |
description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
|
202 |
css=custom_css
|
203 |
).launch(debug=True)
|
|
|
|
|
|
3 |
import gdown
|
4 |
import pathlib
|
5 |
import tensorflow as tf
|
6 |
+
from tensorflow.keras.preprocessing import image_dataset_from_directory
|
7 |
+
|
8 |
from tensorflow.keras import layers
|
9 |
from tensorflow.keras.models import Sequential
|
10 |
+
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, BatchNormalization, Rescaling
|
11 |
+
from tensorflow.keras.callbacks import EarlyStopping, LearningRateScheduler
|
12 |
import gradio as gr
|
13 |
import numpy as np
|
14 |
|
|
|
42 |
# Convert the extracted directory path to a pathlib.Path object
|
43 |
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
44 |
|
45 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
# Set image dimensions and batch size
|
48 |
img_height, img_width = 180, 180
|
49 |
batch_size = 32
|
50 |
|
51 |
# Create training and validation datasets
|
52 |
+
train_ds = image_dataset_from_directory(
|
53 |
data_dir,
|
54 |
validation_split=0.2,
|
55 |
subset="training",
|
|
|
58 |
batch_size=batch_size
|
59 |
)
|
60 |
|
61 |
+
val_ds = image_dataset_from_directory(
|
62 |
data_dir,
|
63 |
validation_split=0.2,
|
64 |
subset="validation",
|
|
|
70 |
class_names = train_ds.class_names
|
71 |
print(class_names)
|
72 |
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
data_augmentation = tf.keras.Sequential(
|
|
|
|
|
|
|
|
|
|
|
79 |
[
|
80 |
layers.RandomFlip("horizontal", input_shape=(img_height, img_width, 3)),
|
81 |
layers.RandomRotation(0.2),
|
|
|
85 |
]
|
86 |
)
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
|
90 |
+
|
91 |
num_classes = len(class_names)
|
92 |
model = Sequential()
|
93 |
|
94 |
model.add(data_augmentation)
|
95 |
+
model.add(Rescaling(1./255))
|
96 |
|
97 |
+
model.add(Conv2D(32, 3, padding='same', activation='relu'))
|
98 |
+
model.add(BatchNormalization())
|
99 |
+
model.add(MaxPooling2D())
|
100 |
|
101 |
+
model.add(Conv2D(64, 3, padding='same', activation='relu'))
|
102 |
+
model.add(BatchNormalization())
|
103 |
+
model.add(MaxPooling2D())
|
104 |
|
105 |
+
model.add(Conv2D(128, 3, padding='same', activation='relu'))
|
106 |
+
model.add(BatchNormalization())
|
107 |
+
model.add(MaxPooling2D())
|
108 |
|
109 |
+
model.add(Conv2D(256, 3, padding='same', activation='relu'))
|
110 |
+
model.add(BatchNormalization())
|
111 |
+
model.add(MaxPooling2D())
|
112 |
|
113 |
+
model.add(Conv2D(512, 3, padding='same', activation='relu'))
|
114 |
+
model.add(BatchNormalization())
|
115 |
+
model.add(MaxPooling2D())
|
116 |
|
117 |
+
model.add(Dropout(0.5))
|
118 |
+
model.add(Flatten())
|
119 |
|
120 |
+
model.add(Dense(256, activation='relu'))
|
121 |
+
model.add(Dropout(0.5))
|
122 |
|
123 |
+
model.add(Dense(num_classes, activation='softmax', name="outputs"))
|
124 |
|
125 |
+
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4),
|
126 |
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
|
127 |
metrics=['accuracy'])
|
128 |
|
129 |
model.summary()
|
130 |
|
|
|
|
|
131 |
|
132 |
+
|
133 |
+
# Implement early stopping
|
134 |
early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
|
135 |
|
136 |
# Learning rate scheduler
|
|
|
140 |
else:
|
141 |
return lr * tf.math.exp(-0.1)
|
142 |
|
143 |
+
lr_scheduler = LearningRateScheduler(scheduler)
|
144 |
|
145 |
# Train the model
|
146 |
epochs = 30
|
|
|
151 |
callbacks=[early_stopping, lr_scheduler]
|
152 |
)
|
153 |
|
154 |
+
|
155 |
+
|
156 |
def predict_image(img):
|
157 |
img = np.array(img)
|
158 |
+
img_resized = tf.image.resize(img, (img_height, img_width))
|
159 |
img_4d = tf.expand_dims(img_resized, axis=0)
|
160 |
prediction = model.predict(img_4d)[0]
|
161 |
predicted_class = np.argmax(prediction)
|
162 |
predicted_label = class_names[predicted_class]
|
163 |
return {predicted_label: f"{float(prediction[predicted_class]):.2f}"}
|
164 |
|
|
|
165 |
image = gr.Image()
|
166 |
label = gr.Label(num_top_classes=1)
|
167 |
|
|
|
184 |
description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
|
185 |
css=custom_css
|
186 |
).launch(debug=True)
|
187 |
+
|
188 |
+
|