Spaces:
Runtime error
Runtime error
NORLIE JHON MALAGDAO
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,14 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import matplotlib.pyplot as plt
|
3 |
-
import numpy as np
|
4 |
import os
|
5 |
-
import
|
|
|
|
|
6 |
import tensorflow as tf
|
7 |
-
|
8 |
from tensorflow import keras
|
9 |
from tensorflow.keras import layers
|
10 |
from tensorflow.keras.models import Sequential
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
import gdown
|
15 |
-
import zipfile
|
16 |
-
|
17 |
-
import pathlib
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
|
23 |
# Define the Google Drive shareable link
|
24 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
@@ -48,9 +38,9 @@ except zipfile.BadZipFile:
|
|
48 |
os.remove(local_zip_file)
|
49 |
|
50 |
# Convert the extracted directory path to a pathlib.Path object
|
51 |
-
data_dir = pathlib.Path(
|
52 |
|
53 |
-
#
|
54 |
for root, dirs, files in os.walk(extracted_path):
|
55 |
level = root.replace(extracted_path, '').count(os.sep)
|
56 |
indent = ' ' * 4 * (level)
|
@@ -59,143 +49,143 @@ for root, dirs, files in os.walk(extracted_path):
|
|
59 |
for f in files:
|
60 |
print(f"{subindent}{f}")
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
data_dir = pathlib.Path(data_dir)
|
66 |
-
|
67 |
-
|
68 |
-
bees = list(data_dir.glob('bees/*'))
|
69 |
-
print(bees[0])
|
70 |
-
PIL.Image.open(str(bees[0]))
|
71 |
-
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
seed=123,
|
86 |
-
image_size=(img_height, img_width),
|
87 |
-
batch_size=batch_size)
|
88 |
-
|
89 |
-
val_ds = tf.keras.utils.image_dataset_from_directory(
|
90 |
-
data_dir,
|
91 |
-
validation_split=0.2,
|
92 |
-
subset="validation",
|
93 |
-
seed=123,
|
94 |
-
image_size=(img_height, img_width),
|
95 |
-
batch_size=batch_size)
|
96 |
|
97 |
class_names = train_ds.class_names
|
98 |
print(class_names)
|
99 |
|
100 |
-
|
101 |
-
|
102 |
plt.figure(figsize=(10, 10))
|
103 |
for images, labels in train_ds.take(1):
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
115 |
|
|
|
|
|
|
|
116 |
|
117 |
-
|
|
|
118 |
|
119 |
-
|
120 |
-
|
|
|
121 |
|
122 |
-
|
|
|
|
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
# Notice the pixel values are now in `[0,1]`.
|
128 |
-
print(np.min(first_image), np.max(first_image))
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
input_shape=(img_height,
|
134 |
-
img_width,
|
135 |
-
3)),
|
136 |
-
layers.RandomRotation(0.1),
|
137 |
-
layers.RandomZoom(0.1),
|
138 |
-
]
|
139 |
-
)
|
140 |
|
|
|
|
|
|
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
for i in range(9):
|
145 |
-
augmented_images = data_augmentation(images)
|
146 |
-
ax = plt.subplot(3, 3, i + 1)
|
147 |
-
plt.imshow(augmented_images[0].numpy().astype("uint8"))
|
148 |
-
plt.axis("off")
|
149 |
|
150 |
-
|
|
|
|
|
|
|
151 |
|
152 |
-
model
|
153 |
-
|
154 |
-
layers.Rescaling(1./255),
|
155 |
-
layers.Conv2D(16, 3, padding='same', activation='relu'),
|
156 |
-
layers.MaxPooling2D(),
|
157 |
-
layers.Conv2D(32, 3, padding='same', activation='relu'),
|
158 |
-
layers.MaxPooling2D(),
|
159 |
-
layers.Conv2D(64, 3, padding='same', activation='relu'),
|
160 |
-
layers.MaxPooling2D(),
|
161 |
-
layers.Dropout(0.2),
|
162 |
-
layers.Flatten(),
|
163 |
-
layers.Dense(128, activation='relu'),
|
164 |
-
layers.Dense(num_classes, name="outputs")
|
165 |
-
])
|
166 |
-
|
167 |
-
model.compile(optimizer='adam',
|
168 |
-
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
169 |
metrics=['accuracy'])
|
170 |
|
171 |
model.summary()
|
172 |
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
history = model.fit(
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
178 |
)
|
179 |
|
180 |
-
|
181 |
-
import numpy as np
|
182 |
-
import tensorflow as tf
|
183 |
-
|
184 |
def predict_image(img):
|
185 |
img = np.array(img)
|
186 |
img_resized = tf.image.resize(img, (180, 180))
|
187 |
img_4d = tf.expand_dims(img_resized, axis=0)
|
188 |
prediction = model.predict(img_4d)[0]
|
189 |
-
|
190 |
-
|
|
|
191 |
|
|
|
192 |
image = gr.Image()
|
193 |
label = gr.Label(num_top_classes=1)
|
194 |
|
195 |
# Define custom CSS for background image
|
196 |
custom_css = """
|
197 |
body {
|
198 |
-
background-image: url('
|
199 |
background-size: cover;
|
200 |
background-repeat: no-repeat;
|
201 |
background-attachment: fixed;
|
@@ -208,6 +198,6 @@ gr.Interface(
|
|
208 |
inputs=image,
|
209 |
outputs=label,
|
210 |
title="Welcome to Agricultural Pest Image Classification",
|
211 |
-
description="The image data set used was
|
212 |
css=custom_css
|
213 |
-
).launch(debug=True)
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import zipfile
|
3 |
+
import gdown
|
4 |
+
import pathlib
|
5 |
import tensorflow as tf
|
|
|
6 |
from tensorflow import keras
|
7 |
from tensorflow.keras import layers
|
8 |
from tensorflow.keras.models import Sequential
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import gradio as gr
|
11 |
+
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Define the Google Drive shareable link
|
14 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
|
|
38 |
os.remove(local_zip_file)
|
39 |
|
40 |
# Convert the extracted directory path to a pathlib.Path object
|
41 |
+
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
42 |
|
43 |
+
# Verify the directory structure
|
44 |
for root, dirs, files in os.walk(extracted_path):
|
45 |
level = root.replace(extracted_path, '').count(os.sep)
|
46 |
indent = ' ' * 4 * (level)
|
|
|
49 |
for f in files:
|
50 |
print(f"{subindent}{f}")
|
51 |
|
52 |
+
# Set image dimensions and batch size
|
53 |
+
img_height, img_width = 180, 180
|
54 |
+
batch_size = 32
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
# Create training and validation datasets
|
57 |
+
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
58 |
+
data_dir,
|
59 |
+
validation_split=0.2,
|
60 |
+
subset="training",
|
61 |
+
seed=123,
|
62 |
+
image_size=(img_height, img_width),
|
63 |
+
batch_size=batch_size
|
64 |
+
)
|
65 |
|
66 |
+
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
67 |
+
data_dir,
|
68 |
+
validation_split=0.2,
|
69 |
+
subset="validation",
|
70 |
+
seed=123,
|
71 |
+
image_size=(img_height, img_width),
|
72 |
+
batch_size=batch_size
|
73 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
class_names = train_ds.class_names
|
76 |
print(class_names)
|
77 |
|
78 |
+
# Display some sample images
|
|
|
79 |
plt.figure(figsize=(10, 10))
|
80 |
for images, labels in train_ds.take(1):
|
81 |
+
for i in range(9):
|
82 |
+
ax = plt.subplot(3, 3, i + 1)
|
83 |
+
plt.imshow(images[i].numpy().astype("uint8"))
|
84 |
+
plt.title(class_names[labels[i]])
|
85 |
+
plt.axis("off")
|
86 |
|
87 |
+
# Enhanced data augmentation
|
88 |
+
data_augmentation = keras.Sequential(
|
89 |
+
[
|
90 |
+
layers.RandomFlip("horizontal", input_shape=(img_height, img_width, 3)),
|
91 |
+
layers.RandomRotation(0.2),
|
92 |
+
layers.RandomZoom(0.2),
|
93 |
+
layers.RandomContrast(0.2),
|
94 |
+
layers.RandomBrightness(0.2),
|
95 |
+
]
|
96 |
+
)
|
97 |
|
98 |
+
# Display augmented images
|
99 |
+
plt.figure(figsize=(10, 10))
|
100 |
+
for images, _ in train_ds.take(1):
|
101 |
+
for i in range(9):
|
102 |
+
augmented_images = data_augmentation(images)
|
103 |
+
ax = plt.subplot(3, 3, i + 1)
|
104 |
+
plt.imshow(augmented_images[0].numpy().astype("uint8"))
|
105 |
+
plt.axis("off")
|
106 |
|
107 |
+
# Define a deeper CNN model with more regularization techniques
|
108 |
+
num_classes = len(class_names)
|
109 |
+
model = Sequential()
|
110 |
|
111 |
+
model.add(data_augmentation)
|
112 |
+
model.add(layers.Rescaling(1./255))
|
113 |
|
114 |
+
model.add(layers.Conv2D(32, 3, padding='same', activation='relu'))
|
115 |
+
model.add(layers.BatchNormalization())
|
116 |
+
model.add(layers.MaxPooling2D())
|
117 |
|
118 |
+
model.add(layers.Conv2D(64, 3, padding='same', activation='relu'))
|
119 |
+
model.add(layers.BatchNormalization())
|
120 |
+
model.add(layers.MaxPooling2D())
|
121 |
|
122 |
+
model.add(layers.Conv2D(128, 3, padding='same', activation='relu'))
|
123 |
+
model.add(layers.BatchNormalization())
|
124 |
+
model.add(layers.MaxPooling2D())
|
|
|
|
|
125 |
|
126 |
+
model.add(layers.Conv2D(256, 3, padding='same', activation='relu'))
|
127 |
+
model.add(layers.BatchNormalization())
|
128 |
+
model.add(layers.MaxPooling2D())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
+
model.add(layers.Conv2D(512, 3, padding='same', activation='relu'))
|
131 |
+
model.add(layers.BatchNormalization())
|
132 |
+
model.add(layers.MaxPooling2D())
|
133 |
|
134 |
+
model.add(layers.Dropout(0.5))
|
135 |
+
model.add(layers.Flatten())
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
+
model.add(layers.Dense(256, activation='relu'))
|
138 |
+
model.add(layers.Dropout(0.5))
|
139 |
+
|
140 |
+
model.add(layers.Dense(num_classes, activation='softmax', name="outputs"))
|
141 |
|
142 |
+
model.compile(optimizer=keras.optimizers.Adam(learning_rate=1e-4),
|
143 |
+
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
metrics=['accuracy'])
|
145 |
|
146 |
model.summary()
|
147 |
|
148 |
+
# Implement early stopping
|
149 |
+
from tensorflow.keras.callbacks import EarlyStopping
|
150 |
+
|
151 |
+
early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
|
152 |
+
|
153 |
+
# Learning rate scheduler
|
154 |
+
def scheduler(epoch, lr):
|
155 |
+
if epoch < 10:
|
156 |
+
return lr
|
157 |
+
else:
|
158 |
+
return lr * tf.math.exp(-0.1)
|
159 |
+
|
160 |
+
lr_scheduler = keras.callbacks.LearningRateScheduler(scheduler)
|
161 |
+
|
162 |
+
# Train the model
|
163 |
+
epochs = 30
|
164 |
history = model.fit(
|
165 |
+
train_ds,
|
166 |
+
validation_data=val_ds,
|
167 |
+
epochs=epochs,
|
168 |
+
callbacks=[early_stopping, lr_scheduler]
|
169 |
)
|
170 |
|
171 |
+
# Define the prediction function
|
|
|
|
|
|
|
172 |
def predict_image(img):
|
173 |
img = np.array(img)
|
174 |
img_resized = tf.image.resize(img, (180, 180))
|
175 |
img_4d = tf.expand_dims(img_resized, axis=0)
|
176 |
prediction = model.predict(img_4d)[0]
|
177 |
+
predicted_class = np.argmax(prediction)
|
178 |
+
predicted_label = class_names[predicted_class]
|
179 |
+
return {predicted_label: f"{float(prediction[predicted_class]):.2f}"}
|
180 |
|
181 |
+
# Set up Gradio interface
|
182 |
image = gr.Image()
|
183 |
label = gr.Label(num_top_classes=1)
|
184 |
|
185 |
# Define custom CSS for background image
|
186 |
custom_css = """
|
187 |
body {
|
188 |
+
background-image: url('extracted_files/Pest_Dataset/bees/bees (444).jpg');
|
189 |
background-size: cover;
|
190 |
background-repeat: no-repeat;
|
191 |
background-attachment: fixed;
|
|
|
198 |
inputs=image,
|
199 |
outputs=label,
|
200 |
title="Welcome to Agricultural Pest Image Classification",
|
201 |
+
description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
|
202 |
css=custom_css
|
203 |
+
).launch(debug=True)
|