Spaces:
Runtime error
Runtime error
NORLIE JHON MALAGDAO
commited on
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import numpy as np
|
| 5 |
+
import os
|
| 6 |
+
import PIL
|
| 7 |
+
import tensorflow as tf
|
| 8 |
+
|
| 9 |
+
from tensorflow import keras
|
| 10 |
+
from tensorflow.keras import layers
|
| 11 |
+
from tensorflow.keras.models import Sequential
|
| 12 |
+
|
| 13 |
+
from PIL import Image
|
| 14 |
+
import gdown
|
| 15 |
+
import zipfile
|
| 16 |
+
import pathlib
|
| 17 |
+
|
| 18 |
+
# Define the Google Drive shareable link
|
| 19 |
+
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
| 20 |
+
|
| 21 |
+
# Extract the file ID from the URL
|
| 22 |
+
file_id = gdrive_url.split('/d/')[1].split('/view')[0]
|
| 23 |
+
direct_download_url = f'https://drive.google.com/uc?id={file_id}'
|
| 24 |
+
|
| 25 |
+
# Define the local filename to save the ZIP file
|
| 26 |
+
local_zip_file = 'file.zip'
|
| 27 |
+
|
| 28 |
+
# Download the ZIP file
|
| 29 |
+
gdown.download(direct_download_url, local_zip_file, quiet=False)
|
| 30 |
+
|
| 31 |
+
# Directory to extract files
|
| 32 |
+
extracted_path = 'extracted_files'
|
| 33 |
+
|
| 34 |
+
# Verify if the downloaded file is a ZIP file and extract it
|
| 35 |
+
try:
|
| 36 |
+
with zipfile.ZipFile(local_zip_file, 'r') as zip_ref:
|
| 37 |
+
zip_ref.extractall(extracted_path)
|
| 38 |
+
print("Extraction successful!")
|
| 39 |
+
except zipfile.BadZipFile:
|
| 40 |
+
print("Error: The downloaded file is not a valid ZIP file.")
|
| 41 |
+
|
| 42 |
+
# Optionally, you can delete the ZIP file after extraction
|
| 43 |
+
os.remove(local_zip_file)
|
| 44 |
+
|
| 45 |
+
# Convert the extracted directory path to a pathlib.Path object
|
| 46 |
+
data_dir = pathlib.Path(extracted_path)
|
| 47 |
+
|
| 48 |
+
# Print the directory structure to debug
|
| 49 |
+
for root, dirs, files in os.walk(extracted_path):
|
| 50 |
+
level = root.replace(extracted_path, '').count(os.sep)
|
| 51 |
+
indent = ' ' * 4 * (level)
|
| 52 |
+
print(f"{indent}{os.path.basename(root)}/")
|
| 53 |
+
subindent = ' ' * 4 * (level + 1)
|
| 54 |
+
for f in files:
|
| 55 |
+
print(f"{subindent}{f}")
|
| 56 |
+
|
| 57 |
+
# Path to the dataset directory
|
| 58 |
+
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
| 59 |
+
|
| 60 |
+
img_height, img_width = 180, 180
|
| 61 |
+
batch_size = 32
|
| 62 |
+
|
| 63 |
+
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
| 64 |
+
data_dir,
|
| 65 |
+
validation_split=0.2,
|
| 66 |
+
subset="training",
|
| 67 |
+
seed=123,
|
| 68 |
+
image_size=(img_height, img_width),
|
| 69 |
+
batch_size=batch_size
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
| 73 |
+
data_dir,
|
| 74 |
+
validation_split=0.2,
|
| 75 |
+
subset="validation",
|
| 76 |
+
seed=123,
|
| 77 |
+
image_size=(img_height, img_width),
|
| 78 |
+
batch_size=batch_size
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
class_names = train_ds.class_names
|
| 82 |
+
print(class_names)
|
| 83 |
+
|
| 84 |
+
plt.figure(figsize=(10, 10))
|
| 85 |
+
for images, labels in train_ds.take(1):
|
| 86 |
+
for i in range(9):
|
| 87 |
+
ax = plt.subplot(3, 3, i + 1)
|
| 88 |
+
plt.imshow(images[i].numpy().astype("uint8"))
|
| 89 |
+
plt.title(class_names[labels[i]])
|
| 90 |
+
plt.axis("off")
|
| 91 |
+
|
| 92 |
+
# Define data augmentation
|
| 93 |
+
data_augmentation = keras.Sequential([
|
| 94 |
+
layers.RandomFlip("horizontal", input_shape=(img_height, img_width, 3)),
|
| 95 |
+
layers.RandomRotation(0.1),
|
| 96 |
+
layers.RandomZoom(0.1),
|
| 97 |
+
])
|
| 98 |
+
|
| 99 |
+
num_classes = 12
|
| 100 |
+
|
| 101 |
+
model = Sequential([
|
| 102 |
+
data_augmentation,
|
| 103 |
+
layers.Rescaling(1./255),
|
| 104 |
+
layers.Conv2D(16, 3, padding='same', activation='relu'),
|
| 105 |
+
layers.MaxPooling2D(),
|
| 106 |
+
layers.Conv2D(32, 3, padding='same', activation='relu'),
|
| 107 |
+
layers.MaxPooling2D(),
|
| 108 |
+
layers.Conv2D(64, 3, padding='same', activation='relu'),
|
| 109 |
+
layers.MaxPooling2D(),
|
| 110 |
+
layers.Dropout(0.2),
|
| 111 |
+
layers.Flatten(),
|
| 112 |
+
layers.Dense(128, activation='relu'),
|
| 113 |
+
layers.Dense(num_classes, name="outputs")
|
| 114 |
+
])
|
| 115 |
+
|
| 116 |
+
model.compile(optimizer='adam',
|
| 117 |
+
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
| 118 |
+
metrics=['accuracy'])
|
| 119 |
+
|
| 120 |
+
epochs = 10
|
| 121 |
+
history = model.fit(
|
| 122 |
+
train_ds,
|
| 123 |
+
validation_data=val_ds,
|
| 124 |
+
epochs=epochs
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
def predict_image(img):
|
| 128 |
+
img = np.array(img)
|
| 129 |
+
img_resized = tf.image.resize(img, (180, 180))
|
| 130 |
+
img_4d = tf.expand_dims(img_resized, axis=0)
|
| 131 |
+
prediction = model.predict(img_4d)[0]
|
| 132 |
+
return {class_names[i]: float(prediction[i]) for i in range(len(class_names))}
|
| 133 |
+
|
| 134 |
+
image = gr.Image()
|
| 135 |
+
label = gr.Label(num_top_classes=5)
|
| 136 |
+
|
| 137 |
+
gr.Interface(
|
| 138 |
+
fn=predict_image,
|
| 139 |
+
inputs=image,
|
| 140 |
+
outputs=label,
|
| 141 |
+
title="Pest Classification",
|
| 142 |
+
description="Upload an image of a pest to classify it into one of the predefined categories."
|
| 143 |
+
).launch(debug=True)
|