Spaces:
Runtime error
Runtime error
NORLIE JHON MALAGDAO
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,175 +1,125 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import matplotlib.pyplot as plt
|
3 |
-
import numpy as np
|
4 |
-
import os
|
5 |
-
import PIL
|
6 |
-
import tensorflow as tf
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
# Define the Google Drive shareable link
|
17 |
-
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
18 |
-
|
19 |
-
# Extract the file ID from the URL
|
20 |
-
file_id = gdrive_url.split('/d/')[1].split('/view')[0]
|
21 |
-
direct_download_url = f'https://drive.google.com/uc?id={file_id}'
|
22 |
-
|
23 |
-
# Define the local filename to save the ZIP file
|
24 |
-
local_zip_file = 'file.zip'
|
25 |
-
|
26 |
-
# Download the ZIP file
|
27 |
-
gdown.download(direct_download_url, local_zip_file, quiet=False)
|
28 |
-
|
29 |
-
# Directory to extract files
|
30 |
-
extracted_path = 'extracted_files'
|
31 |
-
|
32 |
-
# Verify if the downloaded file is a ZIP file and extract it
|
33 |
-
try:
|
34 |
-
with zipfile.ZipFile(local_zip_file, 'r') as zip_ref:
|
35 |
-
zip_ref.extractall(extracted_path)
|
36 |
-
print("Extraction successful!")
|
37 |
-
except zipfile.BadZipFile:
|
38 |
-
print("Error: The downloaded file is not a valid ZIP file.")
|
39 |
-
|
40 |
-
# Optionally, you can delete the ZIP file after extraction
|
41 |
-
os.remove(local_zip_file)
|
42 |
-
|
43 |
-
# Convert the extracted directory path to a pathlib.Path object
|
44 |
-
data_dir = pathlib.Path(extracted_path)
|
45 |
-
|
46 |
-
# Print the directory structure to debug
|
47 |
-
for root, dirs, files in os.walk(extracted_path):
|
48 |
-
level = root.replace(extracted_path, '').count(os.sep)
|
49 |
-
indent = ' ' * 4 * (level)
|
50 |
-
print(f"{indent}{os.path.basename(root)}/")
|
51 |
-
subindent = ' ' * 4 * (level + 1)
|
52 |
-
for f in files:
|
53 |
-
print(f"{subindent}{f}")
|
54 |
-
|
55 |
-
# Path to the dataset directory
|
56 |
-
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
57 |
-
|
58 |
-
img_height, img_width = 180, 180
|
59 |
-
batch_size = 32
|
60 |
|
61 |
-
# Load training and validation datasets
|
62 |
-
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
63 |
-
data_dir,
|
64 |
-
validation_split=0.2,
|
65 |
-
subset="training",
|
66 |
-
seed=123,
|
67 |
-
image_size=(img_height, img_width),
|
68 |
-
batch_size=batch_size
|
69 |
-
)
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
# Define data augmentation layers
|
81 |
data_augmentation = keras.Sequential(
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
87 |
)
|
88 |
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
model = Sequential([
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
])
|
105 |
|
106 |
model.compile(optimizer='adam',
|
107 |
-
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=
|
108 |
metrics=['accuracy'])
|
109 |
|
110 |
model.summary()
|
111 |
|
112 |
-
# Train the model
|
113 |
epochs = 15
|
114 |
history = model.fit(
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
)
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
plt.xlabel('Epoch')
|
124 |
-
plt.ylabel('Accuracy')
|
125 |
-
plt.legend()
|
126 |
-
plt.show()
|
127 |
-
|
128 |
-
plt.plot(history.history['loss'], label='loss')
|
129 |
-
plt.plot(history.history['val_loss'], label='val_loss')
|
130 |
-
plt.xlabel('Epoch')
|
131 |
-
plt.ylabel('Loss')
|
132 |
-
plt.legend()
|
133 |
-
plt.show()
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
# Define category descriptions
|
139 |
-
category_descriptions = {
|
140 |
-
"Ants": "Ants are small insects known for their complex social structures and teamwork.",
|
141 |
-
"Bees": "Bees are flying insects known for their role in pollination and producing honey.",
|
142 |
-
"Beetles": "Beetles are a group of insects with hard exoskeletons and wings. They are the largest order of insects.",
|
143 |
-
"Caterpillars": "Caterpillars are the larval stage of butterflies and moths, known for their voracious appetite.",
|
144 |
-
"Earthworms": "Earthworms are segmented worms that are crucial for soil health and nutrient cycling.",
|
145 |
-
"Earwigs": "Earwigs are insects with pincers on their abdomen and are known for their nocturnal activity.",
|
146 |
-
"Grasshoppers": "Grasshoppers are insects known for their powerful hind legs, which they use for jumping.",
|
147 |
-
"Moths": "Moths are nocturnal insects related to butterflies, known for their attraction to light.",
|
148 |
-
"Slugs": "Slugs are soft-bodied mollusks that are similar to snails but lack a shell.",
|
149 |
-
"Snails": "Snails are mollusks with a coiled shell, known for their slow movement and slimy trail.",
|
150 |
-
"Wasps": "Wasps are stinging insects that can be solitary or social, and some species are important pollinators.",
|
151 |
-
"Weevils": "Weevils are a type of beetle with a long snout, known for being pests to crops and stored grains."
|
152 |
-
}
|
153 |
|
154 |
-
# Define the prediction function
|
155 |
def predict_image(img):
|
156 |
img = np.array(img)
|
157 |
img_resized = tf.image.resize(img, (180, 180))
|
158 |
img_4d = tf.expand_dims(img_resized, axis=0)
|
159 |
prediction = model.predict(img_4d)[0]
|
160 |
-
|
161 |
-
|
162 |
-
predicted_description = category_descriptions[predicted_label]
|
163 |
-
return {predicted_label: f"{float(prediction[predicted_class]):.2f} - {predicted_description}"}
|
164 |
|
165 |
-
# Set up Gradio interface
|
166 |
image = gr.Image()
|
167 |
-
label = gr.Label(num_top_classes=
|
168 |
|
169 |
# Define custom CSS for background image
|
170 |
custom_css = """
|
171 |
body {
|
172 |
-
background-image: url('extracted_files
|
173 |
background-size: cover;
|
174 |
background-repeat: no-repeat;
|
175 |
background-attachment: fixed;
|
@@ -181,8 +131,7 @@ gr.Interface(
|
|
181 |
fn=predict_image,
|
182 |
inputs=image,
|
183 |
outputs=label,
|
184 |
-
title="
|
185 |
-
description="
|
186 |
css=custom_css
|
187 |
-
).launch(debug=True)
|
188 |
-
|
|
|
1 |
+
batch_size = 32
|
2 |
+
img_height = 180
|
3 |
+
img_width = 180
|
4 |
+
|
5 |
+
train_ds = tf.keras.utils.image_dataset_from_directory(
|
6 |
+
data_dir,
|
7 |
+
validation_split=0.2,
|
8 |
+
subset="training",
|
9 |
+
seed=123,
|
10 |
+
image_size=(img_height, img_width),
|
11 |
+
batch_size=batch_size)
|
12 |
+
|
13 |
+
val_ds = tf.keras.utils.image_dataset_from_directory(
|
14 |
+
data_dir,
|
15 |
+
validation_split=0.2,
|
16 |
+
subset="validation",
|
17 |
+
seed=123,
|
18 |
+
image_size=(img_height, img_width),
|
19 |
+
batch_size=batch_size)
|
20 |
+
|
21 |
+
class_names = train_ds.class_names
|
22 |
+
print(class_names)
|
23 |
+
|
24 |
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
plt.figure(figsize=(10, 10))
|
27 |
+
for images, labels in train_ds.take(1):
|
28 |
+
for i in range(9):
|
29 |
+
ax = plt.subplot(3, 3, i + 1)
|
30 |
+
plt.imshow(images[i].numpy().astype("uint8"))
|
31 |
+
plt.title(class_names[labels[i]])
|
32 |
+
plt.axis("off")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
for image_batch, labels_batch in train_ds:
|
36 |
+
print(image_batch.shape)
|
37 |
+
print(labels_batch.shape)
|
38 |
+
break
|
39 |
+
|
40 |
+
|
41 |
+
AUTOTUNE = tf.data.AUTOTUNE
|
42 |
+
|
43 |
+
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
|
44 |
+
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
|
45 |
+
|
46 |
+
normalization_layer = layers.Rescaling(1./255)
|
47 |
+
|
48 |
+
normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
|
49 |
+
image_batch, labels_batch = next(iter(normalized_ds))
|
50 |
+
first_image = image_batch[0]
|
51 |
+
# Notice the pixel values are now in `[0,1]`.
|
52 |
+
print(np.min(first_image), np.max(first_image))
|
53 |
|
|
|
54 |
data_augmentation = keras.Sequential(
|
55 |
+
[
|
56 |
+
layers.RandomFlip("horizontal",
|
57 |
+
input_shape=(img_height,
|
58 |
+
img_width,
|
59 |
+
3)),
|
60 |
+
layers.RandomRotation(0.1),
|
61 |
+
layers.RandomZoom(0.1),
|
62 |
+
]
|
63 |
)
|
64 |
|
65 |
+
|
66 |
+
plt.figure(figsize=(10, 10))
|
67 |
+
for images, _ in train_ds.take(1):
|
68 |
+
for i in range(9):
|
69 |
+
augmented_images = data_augmentation(images)
|
70 |
+
ax = plt.subplot(3, 3, i + 1)
|
71 |
+
plt.imshow(augmented_images[0].numpy().astype("uint8"))
|
72 |
+
plt.axis("off")
|
73 |
+
|
74 |
+
num_classes = len(class_names)
|
75 |
+
|
76 |
model = Sequential([
|
77 |
+
data_augmentation,
|
78 |
+
layers.Rescaling(1./255),
|
79 |
+
layers.Conv2D(16, 3, padding='same', activation='relu'),
|
80 |
+
layers.MaxPooling2D(),
|
81 |
+
layers.Conv2D(32, 3, padding='same', activation='relu'),
|
82 |
+
layers.MaxPooling2D(),
|
83 |
+
layers.Conv2D(64, 3, padding='same', activation='relu'),
|
84 |
+
layers.MaxPooling2D(),
|
85 |
+
layers.Dropout(0.2),
|
86 |
+
layers.Flatten(),
|
87 |
+
layers.Dense(128, activation='relu'),
|
88 |
+
layers.Dense(num_classes, name="outputs")
|
89 |
])
|
90 |
|
91 |
model.compile(optimizer='adam',
|
92 |
+
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
93 |
metrics=['accuracy'])
|
94 |
|
95 |
model.summary()
|
96 |
|
|
|
97 |
epochs = 15
|
98 |
history = model.fit(
|
99 |
+
train_ds,
|
100 |
+
validation_data=val_ds,
|
101 |
+
epochs=epochs
|
102 |
)
|
103 |
|
104 |
+
import gradio as gr
|
105 |
+
import numpy as np
|
106 |
+
import tensorflow as tf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
|
|
108 |
def predict_image(img):
|
109 |
img = np.array(img)
|
110 |
img_resized = tf.image.resize(img, (180, 180))
|
111 |
img_4d = tf.expand_dims(img_resized, axis=0)
|
112 |
prediction = model.predict(img_4d)[0]
|
113 |
+
return {class_names[i]: float(prediction[i]) for i in range(len(class_names))}
|
114 |
+
|
|
|
|
|
115 |
|
|
|
116 |
image = gr.Image()
|
117 |
+
label = gr.Label(num_top_classes=12)
|
118 |
|
119 |
# Define custom CSS for background image
|
120 |
custom_css = """
|
121 |
body {
|
122 |
+
background-image: url('\extracted_files\Pest_Dataset\bees\bees (444).jpg');
|
123 |
background-size: cover;
|
124 |
background-repeat: no-repeat;
|
125 |
background-attachment: fixed;
|
|
|
131 |
fn=predict_image,
|
132 |
inputs=image,
|
133 |
outputs=label,
|
134 |
+
title="Pest Classification",
|
135 |
+
description="Upload an image of a pest to classify it into one of the predefined categories.",
|
136 |
css=custom_css
|
137 |
+
).launch(debug=True)
|
|