Spaces:
Runtime error
Runtime error
NORLIE JHON MALAGDAO
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -8,18 +8,11 @@ import tensorflow as tf
|
|
8 |
from tensorflow import keras
|
9 |
from tensorflow.keras import layers
|
10 |
from tensorflow.keras.models import Sequential
|
11 |
-
|
12 |
-
|
13 |
from PIL import Image
|
14 |
import gdown
|
15 |
import zipfile
|
16 |
-
|
17 |
import pathlib
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
# Define the Google Drive shareable link
|
24 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
25 |
|
@@ -59,92 +52,55 @@ for root, dirs, files in os.walk(extracted_path):
|
|
59 |
for f in files:
|
60 |
print(f"{subindent}{f}")
|
61 |
|
62 |
-
import pathlib
|
63 |
# Path to the dataset directory
|
64 |
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
65 |
-
data_dir = pathlib.Path(data_dir)
|
66 |
-
|
67 |
-
|
68 |
-
bees = list(data_dir.glob('bees/*'))
|
69 |
-
print(bees[0])
|
70 |
-
PIL.Image.open(str(bees[0]))
|
71 |
-
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
PIL.Image.open(str(bees[0]))
|
76 |
|
77 |
-
|
78 |
-
img_height,img_width=180,180
|
79 |
-
batch_size=32
|
80 |
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
|
89 |
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
class_names = train_ds.class_names
|
99 |
-
print(class_names)
|
100 |
-
|
101 |
-
|
102 |
-
import matplotlib.pyplot as plt
|
103 |
-
|
104 |
-
plt.figure(figsize=(10, 10))
|
105 |
-
for images, labels in train_ds.take(1):
|
106 |
-
for i in range(9):
|
107 |
-
ax = plt.subplot(3, 3, i + 1)
|
108 |
-
plt.imshow(images[i].numpy().astype("uint8"))
|
109 |
-
plt.title(class_names[labels[i]])
|
110 |
-
plt.axis("off")
|
111 |
-
|
112 |
|
|
|
113 |
data_augmentation = keras.Sequential(
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
layers.RandomRotation(0.1),
|
120 |
-
layers.RandomZoom(0.1),
|
121 |
-
]
|
122 |
)
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
for images, _ in train_ds.take(1):
|
127 |
-
for i in range(9):
|
128 |
-
augmented_images = data_augmentation(images)
|
129 |
-
ax = plt.subplot(3, 3, i + 1)
|
130 |
-
plt.imshow(augmented_images[0].numpy().astype("uint8"))
|
131 |
-
plt.axis("off")
|
132 |
-
|
133 |
-
|
134 |
-
num_classes = len(class_names)
|
135 |
model = Sequential([
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
])
|
149 |
|
150 |
model.compile(optimizer='adam',
|
@@ -153,14 +109,30 @@ model.compile(optimizer='adam',
|
|
153 |
|
154 |
model.summary()
|
155 |
|
156 |
-
|
157 |
epochs = 15
|
158 |
history = model.fit(
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
)
|
163 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
|
166 |
# Define category descriptions
|
|
|
8 |
from tensorflow import keras
|
9 |
from tensorflow.keras import layers
|
10 |
from tensorflow.keras.models import Sequential
|
|
|
|
|
11 |
from PIL import Image
|
12 |
import gdown
|
13 |
import zipfile
|
|
|
14 |
import pathlib
|
15 |
|
|
|
|
|
|
|
|
|
16 |
# Define the Google Drive shareable link
|
17 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
18 |
|
|
|
52 |
for f in files:
|
53 |
print(f"{subindent}{f}")
|
54 |
|
|
|
55 |
# Path to the dataset directory
|
56 |
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
img_height, img_width = 180, 180
|
59 |
+
batch_size = 32
|
|
|
60 |
|
61 |
+
# Load training and validation datasets
|
|
|
|
|
62 |
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
63 |
+
data_dir,
|
64 |
+
validation_split=0.2,
|
65 |
+
subset="training",
|
66 |
+
seed=123,
|
67 |
+
image_size=(img_height, img_width),
|
68 |
+
batch_size=batch_size
|
69 |
+
)
|
70 |
|
71 |
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
72 |
+
data_dir,
|
73 |
+
validation_split=0.2,
|
74 |
+
subset="validation",
|
75 |
+
seed=123,
|
76 |
+
image_size=(img_height, img_width),
|
77 |
+
batch_size=batch_size
|
78 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
# Define data augmentation layers
|
81 |
data_augmentation = keras.Sequential(
|
82 |
+
[
|
83 |
+
layers.RandomFlip("horizontal", input_shape=(img_height, img_width, 3)),
|
84 |
+
layers.RandomRotation(0.1),
|
85 |
+
layers.RandomZoom(0.1),
|
86 |
+
]
|
|
|
|
|
|
|
87 |
)
|
88 |
|
89 |
+
# Define the model
|
90 |
+
num_classes = len(train_ds.class_names)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
model = Sequential([
|
92 |
+
data_augmentation,
|
93 |
+
layers.Rescaling(1./255),
|
94 |
+
layers.Conv2D(16, 3, padding='same', activation='relu'),
|
95 |
+
layers.MaxPooling2D(),
|
96 |
+
layers.Conv2D(32, 3, padding='same', activation='relu'),
|
97 |
+
layers.MaxPooling2D(),
|
98 |
+
layers.Conv2D(64, 3, padding='same', activation='relu'),
|
99 |
+
layers.MaxPooling2D(),
|
100 |
+
layers.Dropout(0.2),
|
101 |
+
layers.Flatten(),
|
102 |
+
layers.Dense(128, activation='relu'),
|
103 |
+
layers.Dense(num_classes, activation='softmax', name="outputs") # Use softmax here
|
104 |
])
|
105 |
|
106 |
model.compile(optimizer='adam',
|
|
|
109 |
|
110 |
model.summary()
|
111 |
|
112 |
+
# Train the model
|
113 |
epochs = 15
|
114 |
history = model.fit(
|
115 |
+
train_ds,
|
116 |
+
validation_data=val_ds,
|
117 |
+
epochs=epochs
|
118 |
)
|
119 |
|
120 |
+
# Plot training history
|
121 |
+
plt.plot(history.history['accuracy'], label='accuracy')
|
122 |
+
plt.plot(history.history['val_accuracy'], label='val_accuracy')
|
123 |
+
plt.xlabel('Epoch')
|
124 |
+
plt.ylabel('Accuracy')
|
125 |
+
plt.legend()
|
126 |
+
plt.show()
|
127 |
+
|
128 |
+
plt.plot(history.history['loss'], label='loss')
|
129 |
+
plt.plot(history.history['val_loss'], label='val_loss')
|
130 |
+
plt.xlabel('Epoch')
|
131 |
+
plt.ylabel('Loss')
|
132 |
+
plt.legend()
|
133 |
+
plt.show()
|
134 |
+
|
135 |
+
|
136 |
|
137 |
|
138 |
# Define category descriptions
|