Spaces:
Runtime error
Runtime error
NORLIE JHON MALAGDAO
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -8,13 +8,18 @@ import tensorflow as tf
|
|
8 |
from tensorflow import keras
|
9 |
from tensorflow.keras import layers
|
10 |
from tensorflow.keras.models import Sequential
|
11 |
-
|
12 |
|
13 |
from PIL import Image
|
14 |
import gdown
|
15 |
import zipfile
|
|
|
16 |
import pathlib
|
17 |
|
|
|
|
|
|
|
|
|
18 |
# Define the Google Drive shareable link
|
19 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
20 |
|
@@ -54,77 +59,110 @@ for root, dirs, files in os.walk(extracted_path):
|
|
54 |
for f in files:
|
55 |
print(f"{subindent}{f}")
|
56 |
|
|
|
57 |
# Path to the dataset directory
|
58 |
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
59 |
data_dir = pathlib.Path(data_dir)
|
60 |
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
|
72 |
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
|
81 |
class_names = train_ds.class_names
|
82 |
print(class_names)
|
83 |
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
data_augmentation = keras.Sequential(
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
93 |
)
|
94 |
|
95 |
-
# Use a Pretrained Model
|
96 |
-
base_model = EfficientNetB0(input_shape=(img_height, img_width, 3), include_top=False, weights='imagenet')
|
97 |
-
base_model.trainable = False # Freeze the base model
|
98 |
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
num_classes = len(class_names)
|
101 |
model = Sequential([
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
])
|
109 |
|
110 |
-
model.compile(optimizer=
|
111 |
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False), # Change from_logits to False
|
112 |
metrics=['accuracy'])
|
113 |
|
114 |
model.summary()
|
115 |
|
116 |
-
# Callbacks
|
117 |
-
early_stopping = keras.callbacks.EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
|
118 |
-
lr_scheduler = keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=3, min_lr=1e-5)
|
119 |
|
120 |
-
epochs =
|
121 |
history = model.fit(
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
callbacks=[early_stopping, lr_scheduler]
|
126 |
)
|
127 |
|
|
|
|
|
128 |
# Define category descriptions
|
129 |
category_descriptions = {
|
130 |
"Ants": "Ants are small insects known for their complex social structures and teamwork.",
|
@@ -144,7 +182,7 @@ category_descriptions = {
|
|
144 |
# Define the prediction function
|
145 |
def predict_image(img):
|
146 |
img = np.array(img)
|
147 |
-
img_resized = tf.image.resize(img, (
|
148 |
img_4d = tf.expand_dims(img_resized, axis=0)
|
149 |
prediction = model.predict(img_4d)[0]
|
150 |
predicted_class = np.argmax(prediction)
|
@@ -156,10 +194,13 @@ def predict_image(img):
|
|
156 |
image = gr.Image()
|
157 |
label = gr.Label(num_top_classes=1)
|
158 |
|
|
|
159 |
gr.Interface(
|
160 |
fn=predict_image,
|
161 |
inputs=image,
|
162 |
outputs=label,
|
163 |
title="Welcome to Agricultural Pest Image Classification",
|
164 |
-
description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils"
|
|
|
165 |
).launch(debug=True)
|
|
|
|
8 |
from tensorflow import keras
|
9 |
from tensorflow.keras import layers
|
10 |
from tensorflow.keras.models import Sequential
|
11 |
+
|
12 |
|
13 |
from PIL import Image
|
14 |
import gdown
|
15 |
import zipfile
|
16 |
+
|
17 |
import pathlib
|
18 |
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
# Define the Google Drive shareable link
|
24 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
25 |
|
|
|
59 |
for f in files:
|
60 |
print(f"{subindent}{f}")
|
61 |
|
62 |
+
import pathlib
|
63 |
# Path to the dataset directory
|
64 |
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
65 |
data_dir = pathlib.Path(data_dir)
|
66 |
|
67 |
+
|
68 |
+
bees = list(data_dir.glob('bees/*'))
|
69 |
+
print(bees[0])
|
70 |
+
PIL.Image.open(str(bees[0]))
|
71 |
+
|
72 |
+
|
73 |
+
bees = list(data_dir.glob('bees/*'))
|
74 |
+
print(bees[0])
|
75 |
+
PIL.Image.open(str(bees[0]))
|
76 |
+
|
77 |
+
|
78 |
+
img_height,img_width=180,180
|
79 |
+
batch_size=32
|
80 |
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
81 |
+
data_dir,
|
82 |
+
validation_split=0.2,
|
83 |
+
subset="training",
|
84 |
+
seed=123,
|
85 |
+
image_size=(img_height, img_width),
|
86 |
+
batch_size=batch_size)
|
87 |
+
|
88 |
|
89 |
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
90 |
+
data_dir,
|
91 |
+
validation_split=0.2,
|
92 |
+
subset="validation",
|
93 |
+
seed=123,
|
94 |
+
image_size=(img_height, img_width),
|
95 |
+
batch_size=batch_size)
|
96 |
+
|
97 |
|
98 |
class_names = train_ds.class_names
|
99 |
print(class_names)
|
100 |
|
101 |
+
|
102 |
+
import matplotlib.pyplot as plt
|
103 |
+
|
104 |
+
plt.figure(figsize=(10, 10))
|
105 |
+
for images, labels in train_ds.take(1):
|
106 |
+
for i in range(9):
|
107 |
+
ax = plt.subplot(3, 3, i + 1)
|
108 |
+
plt.imshow(images[i].numpy().astype("uint8"))
|
109 |
+
plt.title(class_names[labels[i]])
|
110 |
+
plt.axis("off")
|
111 |
+
|
112 |
+
|
113 |
data_augmentation = keras.Sequential(
|
114 |
+
[
|
115 |
+
layers.RandomFlip("horizontal",
|
116 |
+
input_shape=(img_height,
|
117 |
+
img_width,
|
118 |
+
3)),
|
119 |
+
layers.RandomRotation(0.1),
|
120 |
+
layers.RandomZoom(0.1),
|
121 |
+
]
|
122 |
)
|
123 |
|
|
|
|
|
|
|
124 |
|
125 |
+
plt.figure(figsize=(10, 10))
|
126 |
+
for images, _ in train_ds.take(1):
|
127 |
+
for i in range(9):
|
128 |
+
augmented_images = data_augmentation(images)
|
129 |
+
ax = plt.subplot(3, 3, i + 1)
|
130 |
+
plt.imshow(augmented_images[0].numpy().astype("uint8"))
|
131 |
+
plt.axis("off")
|
132 |
+
|
133 |
+
|
134 |
num_classes = len(class_names)
|
135 |
model = Sequential([
|
136 |
+
data_augmentation,
|
137 |
+
layers.Rescaling(1./255),
|
138 |
+
layers.Conv2D(16, 3, padding='same', activation='relu'),
|
139 |
+
layers.MaxPooling2D(),
|
140 |
+
layers.Conv2D(32, 3, padding='same', activation='relu'),
|
141 |
+
layers.MaxPooling2D(),
|
142 |
+
layers.Conv2D(64, 3, padding='same', activation='relu'),
|
143 |
+
layers.MaxPooling2D(),
|
144 |
+
layers.Dropout(0.2),
|
145 |
+
layers.Flatten(),
|
146 |
+
layers.Dense(128, activation='relu'),
|
147 |
+
layers.Dense(num_classes, activation='softmax', name="outputs") # Use softmax here
|
148 |
])
|
149 |
|
150 |
+
model.compile(optimizer='adam',
|
151 |
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False), # Change from_logits to False
|
152 |
metrics=['accuracy'])
|
153 |
|
154 |
model.summary()
|
155 |
|
|
|
|
|
|
|
156 |
|
157 |
+
epochs = 15
|
158 |
history = model.fit(
|
159 |
+
train_ds,
|
160 |
+
validation_data=val_ds,
|
161 |
+
epochs=epochs
|
|
|
162 |
)
|
163 |
|
164 |
+
|
165 |
+
|
166 |
# Define category descriptions
|
167 |
category_descriptions = {
|
168 |
"Ants": "Ants are small insects known for their complex social structures and teamwork.",
|
|
|
182 |
# Define the prediction function
|
183 |
def predict_image(img):
|
184 |
img = np.array(img)
|
185 |
+
img_resized = tf.image.resize(img, (180, 180))
|
186 |
img_4d = tf.expand_dims(img_resized, axis=0)
|
187 |
prediction = model.predict(img_4d)[0]
|
188 |
predicted_class = np.argmax(prediction)
|
|
|
194 |
image = gr.Image()
|
195 |
label = gr.Label(num_top_classes=1)
|
196 |
|
197 |
+
|
198 |
gr.Interface(
|
199 |
fn=predict_image,
|
200 |
inputs=image,
|
201 |
outputs=label,
|
202 |
title="Welcome to Agricultural Pest Image Classification",
|
203 |
+
description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
|
204 |
+
css=custom_css
|
205 |
).launch(debug=True)
|
206 |
+
|